Skip to main content
Log in

Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80°C to 90°C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/sigW and rpoD/sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heat-shock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two α-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldsworth TG, Sharman RL, Dodd CER (1999) Bacterial suicide through stress. Cell Mol Life Sci 56:378–383

    CAS  PubMed  Google Scholar 

  • Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B (1994) Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 176:143–148

    CAS  PubMed  Google Scholar 

  • Arnosti DN (1990) Regulation of Escherichia coli sigma F RNA polymerase by flhD and flhC flagellar regulatory genes. J Bacteriol 172:4106–4108

    CAS  PubMed  Google Scholar 

  • Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184:4881–4890

    Article  CAS  PubMed  Google Scholar 

  • Chhabra SR, Shockley KR, Conners SB, Scott KL, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278:7540–7552

    Article  CAS  PubMed  Google Scholar 

  • Cohen SP, Yan W, Levy SB (1993) A multidrug-resistance regulatory chromosomal locus is widespread among enteric bacteria. J Infect Dis 168:484–488

    CAS  PubMed  Google Scholar 

  • Dartigalongue C, Missiakas D, Raina S (2001) Characterization of the Escherichia coli sigma E regulon. J Biol Chem 276:20866–20875

    Article  CAS  PubMed  Google Scholar 

  • Derre I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat-shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31:117–131

    PubMed  Google Scholar 

  • Dickman MJ, Ingleston SM, Sedelnikova SE, Rafferty JB, Lloyd RG, Grasby JA, Hornby DP (2002) The RuvABC resolvasome. Eur J Biochem 269:5492–5501

    Article  CAS  PubMed  Google Scholar 

  • Grandvalet C, Servant P, Mazodier P (1997) Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol 23:77–84

    CAS  PubMed  Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390

    CAS  PubMed  Google Scholar 

  • Helden J van, Andre B, Collado-Vides J (2000) A Web site for the computational analysis of yeast regulatory sequences. Yeast 16:177–187

    Article  PubMed  Google Scholar 

  • Helmann JD, Chamberlin MJ (1987) DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci USA 84:6422–6424

    CAS  PubMed  Google Scholar 

  • Helmann JD, Wu MFW, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328

    Article  CAS  PubMed  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed  Google Scholar 

  • Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179:1153–1164

    CAS  PubMed  Google Scholar 

  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique, extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Kim DY, Kim DR, Ha SC, Lokanath NK, Lee CJ, Hwang HY, Kim KK (2003) Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J Biol Chem 278:6543–6551

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Aravind L, Galperin MY (2000) In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, D.C., pp 417–444

  • Kruger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat-shock genes. J Bacteriol 180:6681–6688

    PubMed  Google Scholar 

  • Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Matsumura P (1994) The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia P, Forterre P (2000). In: Storz G, Henggep-Aronis R (eds) Bacterial stress response. ASM, Washington, D.C., pp 369–382

  • Martin RG, Gillette WK, Rhee S, Rosner JL (1999) Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34:431–441

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, Fraser CM, et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    CAS  PubMed  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    Article  CAS  PubMed  Google Scholar 

  • Pysz MA, Rinker KD, Shockley KR, Kelly RM (2001) In: Hyperthermophilic enzymes, part A, vol 330, pp 31–40

  • Raina S, Missiakas D, Georgopoulos C (1995) The rpoE gene encoding the sigma E (sigma 24) heat-shock sigma factor of Escherichia coli. EMBO J 14:1043–1055

    CAS  PubMed  Google Scholar 

  • Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624

    Article  CAS  PubMed  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27:3821–3835

    Article  CAS  PubMed  Google Scholar 

  • Rinker KD, Kelly RM (2000) Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng 69:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rouviere PE, De Las Penas A, Mecsas J, Lu CZ, Rudd KE, Gross CA (1995) rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J 14:1032–1042

    CAS  PubMed  Google Scholar 

  • Schulz A, Schumann W (1996) hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat-shock genes. J Bacteriol 178:1088–1093

    CAS  PubMed  Google Scholar 

  • Schumacher MA, Brennan RG (2002) Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 45:885–893

    Article  CAS  PubMed  Google Scholar 

  • Shockley KR, Ward DE, Chhabra SR, Conners SB, Montero CI, Kelly RM (2003) Heat-shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 69:2365–2371

    Article  CAS  PubMed  Google Scholar 

  • Song HK, Bochtler M, Azim MK, Hartmann C, Huber R, Ramachandran R (2003) Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem 100:437–452

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1985) Extremely thermophile bacteria. Naturwissenschaften 72:291–300

    CAS  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185:2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278:2278–2285

    Article  CAS  PubMed  Google Scholar 

  • Versteeg S, Escher A, Wende A, Wiegert T, Schumann W (2003) Regulation of the Bacillus subtilis heat-shock gene htpG is under positive control. J Bacteriol 185:466–474

    Article  CAS  PubMed  Google Scholar 

  • Winterling KW, Levine AS, Yasbin RE, Woodgate R (1997) Characterization of DinR, the Bacillus subtilis SOS repressor. J Bacteriol 179:1698–1703

    CAS  PubMed  Google Scholar 

  • Winterling KW, Chafin D, Hayes JJ, Sun J, Levine AS, Yasbin RE, Woodgate R (1998) The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211

    CAS  PubMed  Google Scholar 

  • Yoshida A, Nakano Y, Yamashita Y, Oho T, Shibata Y, Ohishi M, Koga T (1999) A novel dnaK operon from Porphyromonas gingivalis. FEBS Lett 446:287–291

    Article  CAS  PubMed  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    CAS  PubMed  Google Scholar 

  • Yura T, Kanemori M, Morita T (2000). In: Storz G, Hennge-Aronis R (eds) Bacterial stress responses. ASM, Washington, D.C., pp 3–18

  • Zverlov VV, Schwarz WH (1999) Organization of the chromosomal region containing the genes lexA and topA in Thermotoga neapolitana. Primary structure of LexA reveals phylogenetic relevance. Syst Appl Microbiol 22:174–178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Department of Energy (Energy Biosciences Program). S.B.C. acknowledges support from an NIEHS bioinformatics traineeship. M.R.J. acknowledges support from a GAANN fellowship. The authors wish to thank R. Wolfinger and K. Scott, SAS Institute, Cary, N.C., for help with implementing the mixed model analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Kelly.

Additional information

Communicated by J.N. Reeve

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pysz, M.A., Ward, D.E., Shockley, K.R. et al. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima . Extremophiles 8, 209–217 (2004). https://doi.org/10.1007/s00792-004-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0379-2

Keywords

Navigation