Skip to main content
Log in

Cloning, expression, and biochemical characterization of 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase from the hyperthermophilic bacterium Aquifex pyrophilus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase, catalyzes the aldol-type condensation between phosphoenolpyruvate (PEP) and d-arabinose-5-phosphate (A5P) to produce the unusual 8-carbon sugar KDO8P, and inorganic phosphate. A 15.5-kb segment containing the kdsA gene from the hyperthermophilic bacterium Aquifex pyrophilus was cloned from a genomic library and sequenced. The native kdsA gene lacks a typical ribosome binding site, but contains a conserved U,A-rich sequence upstream to the start codon. The purified kdsA gene product catalyzes the formation of KDO8P from its natural substrates, PEP and A5P, as determined by 1H NMR analysis. KDO8P synthase showed maximum activity at 80 °C and pH 5.5–6.0 at 10-min reaction assay. At temperatures of 70, 80, and 90 °C, the enzyme exhibited half-lives of 8.0, 2.25, and 0.5 h, respectively. The kinetic constants at 60 °C were K m A5P=70 μM, K m PEP=290 μM, and k cat=4 s−1. The isolated enzyme contained 0.19 and 0.26 mol iron and zinc, respectively, per mole of enzyme subunit. Treatment with metal chelators eliminated enzyme activity, and by the addition of several divalent metal ions, the activity was restored and even exceeded the original activity. These results indicate that A. pyrophilus KDO8P synthase is a metal-dependent enzyme. A C11A mutant of KDO8P synthase from A. pyrophulis retained less than 1% of the wild-type activity and was shown to be incapable of metal binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6A, B.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miler W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson L, Unger F (1983) Bacterial lipopolysaccharides: structure, synthesis, and biological activities. Paper presented at the ACS Symposium Series No. 231, Washington, DC

    Google Scholar 

  • Asojo O, Friedman J, Adir N, Belakhov V, Shoham Y, Baasov T (2001) Crystal structures of KDOP synthase in its binary complexes with the substrate phosphoenolpyruvate and with a mechanism-based inhibitor. Biochemistry 40:6326–6334

    CAS  Google Scholar 

  • Baasov T, Jacob A (1990) Anomeric specificity of 3-deoxy-d-manno-2-octulosonate 8-phosphate phosphatase from Escherichia coli. J Am Chem Soc 112:4972–4974

    CAS  Google Scholar 

  • Baasov T, Sheffer-Dee-Noor S, Kohen A, Jakob A, Belakhov V (1993) Catalytic mechanism of 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase. The use of synthetic analogs to probe the structure of the putative reaction intermediate. Eur J Biochem 217:991–999

    CAS  Google Scholar 

  • Bednarski MD, Crans DC, DiCosimo R, Simon ES, Stein PD, Whitesides GM, Schneider MJ (1988) Synthesis of 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO-8-P) from d-arabinose: generation of dD-arabinose-5-phosphate using hexokinase. Tetrahedron Lett 29:427–430

    CAS  Google Scholar 

  • Birck MR, Woodard RW (2001) Aquifex aeolicus 3-deoxy-d-manno-2-octulosonic acid 8-phosphate synthase: a new class of KDO 8-P synthase? J Mol Evol 52:205–214

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT (2003) [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: properties, function, and phylogenetics. Extremophiles 7:145–157

    CAS  PubMed  Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356

    CAS  PubMed  Google Scholar 

  • Clements JM, Coignard F, Johnson I, Chandler S, Palan S, Waller A, Wijkmans J, Hunter MG (2002) Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother 46:1793–1799

    CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    CAS  PubMed  Google Scholar 

  • Dotson GD, Nanjappan P, Reily MD, Woodard RW (1993) Stereochemistry of 3-deoxyoctulosonate 8-phosphate synthase. Biochemistry 32:12392–12397

    CAS  Google Scholar 

  • Dotson GD, Dua RK, Clemens JC, Wooten EW, Woodard RW (1995) Overproduction and one-step purification of Escherichia coli 3-deoxy-d-manno-octulosonic acid 8-phosphate synthase and oxygen transfer studies during catalysis using isotopic-shifted heteronuclear NMR. J Biol Chem 270:13698–13705

    CAS  Google Scholar 

  • Du S, Faiger H, Belakhov V, Baasov T (1999) Towards the development of novel antibiotics: synthesis and evaluation of a mechanism-based inhibitor of Kdo8P synthase. Bioorg Med Chem 7:2671–2682

    CAS  Google Scholar 

  • Duewel HS, Woodard RW (2000) A metal bridge between two enzyme families. 3-deoxy-d-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus requires a divalent metal for activity. J Biol Chem 275:22824–22831

    CAS  Google Scholar 

  • Duewel HS, Sheflyan GY, Woodard RW (1999) Functional and biochemical characterization of a recombinant 3-deoxy-d-manno-octulosonic acid 8-phosphate synthase from the hyperthermophilic bacterium Aquifex aeolicus. Biochem Biophys Res Commun 263:346–351

    CAS  Google Scholar 

  • Duewel HS, Radaev S, Wang J, Woodard RW, Gatti DL (2001) Substrate and metal complexes of 3-deoxy-d-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus at 1.9-A resolution. Implications for the condensation mechanism. J Biol Chem 276:8393–8402

    CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    PubMed  Google Scholar 

  • Goldman R, Kohlbrenner W, Lartey P, Pernet A (1987) Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 329:162–164

    CAS  Google Scholar 

  • Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 181:434–443

    CAS  Google Scholar 

  • Hammond SM, Claesson A, Jansson AM, Larsson LG, Pring BG, Town CM, Ekstrom B (1987) A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature 327:730–732

    CAS  Google Scholar 

  • Hedstrom L, Abeles R (1988) 3-Deoxy-d-manno-octulosonate-8-phosphate synthase catalyzes the C-O bond cleavage of phosphoenolpyruvate. Biochem Biophys Res Commun 157:816–820

    CAS  Google Scholar 

  • Hirschbein BL, Mazenod FP, Whitesides GM (1982) Synthesis of phosphoenolypyruvate and its use in ATP cofactor regeneration. J Org Chem 47:3765–3766

    CAS  Google Scholar 

  • Huber R, Williarm T, Huber D, A T, Burggraf S, Konig H, Rachel R, Rokinger I, Fricke H, Stetter K (1992) Aquifex pyrophilus, gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CR (2000) Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 275:11002–11009

    CAS  Google Scholar 

  • Jensen RA, Xie G, Calhoun DH, Bonner CA (2002) The correct phylogenetic relationship of KdsA (3-deoxy-d-manno-octulosonate 8-phosphate synthase) with one of two independently evolved classes of AroA (3-deoxy-d-arabino-heptulosonate 7-phosphate synthase). J Mol Evol 54:416–423

    CAS  Google Scholar 

  • Kaustov L, Kababya S, Du S, Baasov T, Gropper S, Shoham Y, Schmidt A (2000) Structural and mechanistic investigation of 3-deoxy-d-manno-octulosonate-8-phosphate synthase by solid-state REDOR NMR. Biochemistry 39:14865–14876

    CAS  Google Scholar 

  • Kohen A, Berkovich R, Belakhov V, Baasov T (1993) Stereochemistry of the KDO8P synthase. An efficient synthesis of the 3-fluoro analogues of KDO8P. Bioorg Med Chem Lett 13:1577–1582

    Article  Google Scholar 

  • Krosky DJ, Alm R, Berg M, Carmel G, Tummino PJ, Xu B, Yang W (2002) Helicobacter pylori 3-deoxy-d-manno-octulosonate-8-phosphate (KDO-8-P) synthase is a zinc-metalloenzyme. Biochim Biophys Acta 1594:297–306

    CAS  Google Scholar 

  • Leatherbarrow RJ (2001) GraFit 5. Erithacus Software, Horley, UK

  • Liang PH, Lewis J, Anderson KS, Kohen A, D'Souza FW, Benenson Y, Baasov T (1998) Catalytic mechanism of Kdo8P synthase: transient kinetic studies and evaluation of a putative reaction intermediate. Biochemistry 37:16390–16399

    CAS  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    CAS  Google Scholar 

  • Morell V (1997) Antibiotic resistance: road of no return. Science 278:575–576

    Google Scholar 

  • Munson RS Jr, Rasmussen NS, Osborn MJ (1978) Biosynthesis of lipid A. Enzymatic incorporation of 3-deoxy-d-mannooctulosonate into a precursor of lipid A in Salmonella typhimurium. J Biol Chem 253:1503–1511

    CAS  Google Scholar 

  • Plotz BM, Lindner B, Stetter KO, Holst O (2000) Characterization of a novel lipid A containing d-galacturonic acid that replaces phosphate residues. The structure of the lipid A of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. J Biol Chem 275:11222–11228

    CAS  Google Scholar 

  • Radaev S, Dastidar P, Patel M, Woodard RW, Gatti DL (2000) Structure and mechanism of 3-deoxy-d-manno-octulosonate 8-phosphate synthase. J Biol Chem 275:9476–9484

    PubMed  Google Scholar 

  • Raetz CR (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Am Soc Microbiol, Washington, DC, pp 1035–1063

  • Ray PH (1980) Purification and characterization of 3-deoxy-d-manno-octulosonate 8-phosphate synthetase from Escherichia coli. J Bacteriol 141:635–644

    CAS  Google Scholar 

  • Rick PD, Osborn MJ (1977) Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-d-mannooctulosonate-8-phosphate synthetase. J Biol Chem 252:4895–4903

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schein CH (1989) Production of soluble recombinant proteins in bacteria. Biotechnology 7:1141–1147

    CAS  Google Scholar 

  • Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682

    CAS  Google Scholar 

  • Sheffer-Dee-Noor S, Belakhov V, Baasov T (1993) Insight into the catalytic mechanism of KDO8P synthase. Synthesis and evaluation of the isosteric phosphonate mimic of the putative cyclic intermediate. Bioorg Med Chem Lett 3:1615–1618

    CAS  Google Scholar 

  • Tzareva NV, Makhno VI, Boni IV (1994) Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett 337:189–194

    Article  CAS  PubMed  Google Scholar 

  • Unger FM (1981) The chemistry and biological significance of 3-deoxy-d-manno-2-octulosonic acid (KDO). Adv Carbohydr Chem Biochem 38:323–388

    CAS  Google Scholar 

  • Wagner T, Kretsinger RH, Bauerle R, Tolbert WD (2000) 3-Deoxy-d-manno-octulosonate-8-phosphate synthase from Escherichia coli. Model of binding of phosphoenolpyruvate and d-arabinose-5-phosphate. J Mol Biol 301:233–238

    CAS  Google Scholar 

  • Wang J, Duewel HS, Woodard RW, Gatti DL (2001) Structures of Aquifex aeolicus KDO8P synthase in complex with R5P and PEP, and with a bisubstrate inhibitor: role of active site water in catalysis. Biochemistry 40:15676–15683

    CAS  Google Scholar 

  • Wang J, Duewel HS, Stuckey JA, Woodard RW, Gatti DL (2002) Function of His185 in Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase. J Mol Biol 324:205–214

    CAS  Google Scholar 

  • Washio T, Sasayama J, Tomita M (1998) Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res 26:5456–5463

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gyu Yu (Korea Institute of Science and Technology, Korea) for providing the genomic library of A. pyrophilus, and Prof. Karl O. Stetter (University of Regensburg, Germany) for providing the chromosomal DNA of A. pyrophilus. This work was supported by the Rubin Scientific and Medical Fund for promotion of research at the Technion (grant number 060-624), and by U.S.–Israel Binational Science Foundation Grant 97-356 (T.B.). Additional support was provided by the Fund for the Promotion of Research at the Technion, and by the Otto Meyerhof Center for Biotechnology, Technion, established by the Minerva Foundation (Munich, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timor Baasov.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulami, S., Yaniv, O., Rabkin, E. et al. Cloning, expression, and biochemical characterization of 3-deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase from the hyperthermophilic bacterium Aquifex pyrophilus . Extremophiles 7, 471–481 (2003). https://doi.org/10.1007/s00792-003-0346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-003-0346-3

Keywords

Navigation