Skip to main content
Log in

A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology

  • Published:
Computing and Visualization in Science

Abstract

This work addresses an optimal control approach for a model problem in cardiac electrophysiology with the goal of extinction of a reentry phenomenon. After the introduction of the mathematical model, the derivation of the optimality system, the description of its discretization and a numerical feasibility study in a parallel environment are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allessie M.A., Bonke F.I.M., Schopman F.J.G.: Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ. Res. 33, 54–62 (1973)

    Article  Google Scholar 

  2. Anderson C., Trayanova N., Skouibine K.: Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J. Cardiovasc. Electrophysiol. 11, 1386–1396 (2000)

    Article  Google Scholar 

  3. Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE. Computing 82, 121–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biegler L.T., Ghattas O., Heinkenschloß M., Keyes D., van Bloemen Waanders B. (ed.): Real-time PDE-constrained optimization. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  5. Biros G., Ghattas O.: Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. I. The Krylov-Schur solver. SIAM J. Sci. Comput. 27, 687–713 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgault Y., Coudière Y., Pierre C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal Real World Appl. 10, 458–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandaõ A.J.V., Fernández-Cara E., Magalhães P.M.D., Rojas-Medar M.A.: Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Diff. Eq., 2008(164), 1–20 (2008)

    Google Scholar 

  8. Bub, G.: Optical mapping of pacemaker interactions. PhD thesis. McGill University, Montreal (1999)

  9. Chen H., Allgöwer F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica J. IFAC 34, 1205–1217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colli Franzone P., Deuflhard P., Erdmann B., Lang J., Pavarino L.F.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28, 942–962 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colli Franzone P., Pavarino L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14, 883–911 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans L.C.: Partial differential equations. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  13. Hairer E., Wanner G.: Solving ordinary differential equations, vol. II, 2nd ed. Springer, Berlin (2002)

    Google Scholar 

  14. Hintermüller M., Hoppe R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47, 1721–1743 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinze M., Kunisch K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ito K., Kunisch K.: Receding horizon optimal control for infinite dimensional systems. ESAIM Control Optim. Calc. Var. 8, 741–760 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito K., Kunisch K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  18. Keener J., Sneyd J.: Mathematical Physiology, vol. II: Systems Physiology, 2nd ed. Springer, New York (2009)

    Google Scholar 

  19. Kunisch K., Wagner M.: Optimal control of the bidomain system (I): the monodomain approximation with the Rogers-McCulloch model. Nonlin. Anal. Real World Appl. 13, 1525–1550 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lang, J.: Adaptive ultilevel Solution of Nonlinear Parabolic PDE Systems. Springer, Berlin (2001). (Lecture Notes in Computational Science and Engineering 16)

  21. Meidner D., Vexler B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46, 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagaiah C., Kunisch K.: Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61, 53–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagaiah C., Kunisch K., Plank G.: Numerical solutions for optimal control of monodomain equations in cardiac electrophysiology. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 409–418. Springer, Berlin (2010)

    Chapter  Google Scholar 

  24. Nagaiah C., Kunisch K., Plank G.: Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49, 149–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nielsen B.F., Ruud T.S., Lines G.T., Tveito A.: Optimal monodomain approximations of the bidomain equations. Appl. Math. Comput. 184, 276–290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nocedal J., Wright S.J.: Numerical Optimization, 2nd ed. Springer, New York (2006)

    MATH  Google Scholar 

  27. Pavarino L.F., Scacchi S.: Multilevel additive Schwarz preconditioners for the bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plank G., Liebmann M., Weberdos Santos R., Vigmond E.J., Haase G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54, 585–596 (2007)

    Article  Google Scholar 

  29. Potse M., Dubé B., Richer J., Vinet A., Gulrajani R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)

    Article  Google Scholar 

  30. Rogers J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  31. Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A.: Computing the Electrical Activity in the Heart. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Trangenstein J.A., Kim C.: Operator splitting and adaptive mesh refinement for the Luo-Rudy I model. J. Comput. Phys. 196, 645–679 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. van der Vorst H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Veneroni M.: Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10, 849–868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vigmond, E.J., Boyle, P.M., Leon, L., Plank, G.: Near-real-time simulations of biolelectric activity in small mammalian hearts using graphical processing units. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. IEEE; Minneapolis 2009, pp. 3290–3293

  36. Vigmond E.J., Weberdos Santos R., Prassl A.J., Deo M., Plank G.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008)

    Article  Google Scholar 

  37. Weberdos Santos R., Plank G., Bauer S., Vigmond E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51, 1960–1968 (2004)

    Article  Google Scholar 

  38. Winfree A.T.: Heart muscle as a reaction-diffusion medium: the roles of electric potential diffusion, activation front curvature, and anisotropy. Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 487–526 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunisch.

Additional information

Communicated by: Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunisch, K., Nagaiah, C. & Wagner, M. A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visual Sci. 14, 257–269 (2011). https://doi.org/10.1007/s00791-012-0182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0182-z

Keywords

AMS Subject Classification (2010)

Navigation