Skip to main content
Log in

Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows

  • Published:
Computing and Visualization in Science

Abstract

We study the mathematical modeling and numerical simulation of the motion of red blood cells (RBC) and vesicles subject to an external incompressible flow in a microchannel. RBC and vesicles are viscoelastic bodies consisting of a deformable elastic membrane enclosing an incompressible fluid. We provide an extension of the finite element immersed boundary method by Boffi and Gastaldi (Comput Struct 81:491–501, 2003), Boffi et al. (Math Mod Meth Appl Sci 17:1479–1505, 2007), Boffi et al. (Comput Struct 85:775–783, 2007) based on a model for the membrane that additionally accounts for bending energy and also consider inflow/outflow conditions for the external fluid flow. The stability analysis requires both the approximation of the membrane by cubic splines (instead of linear splines without bending energy) and an upper bound on the inflow velocity. In the fully discrete case, the resulting CFL-type condition on the time step size is also more restrictive. We perform numerical simulations for various scenarios including the tank treading motion of vesicles in microchannels, the behavior of ‘healthy’ and ‘sick’ RBC which differ by their stiffness, and the motion of RBC through thin capillaries. The simulation results are in very good agreement with experimentally available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abkarian M., Lartigue C., Viallat A.: Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88, 068103 (2002)

    Article  Google Scholar 

  2. Abkarian M., Viallat A.: Dynamics of vesicles in a wall-bounded shear flow. Biophys. J. 89, 1055 (2005)

    Article  Google Scholar 

  3. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Molekularbiologie der Zelle. Weinheim, Wiley-VCH (2004)

    Google Scholar 

  4. An X., Lecomte M.C., Chasis J.A., Mohandas N., Gratzer W.: Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J. Biol. Chem. 277(35), 31796–31800 (2002)

    Article  Google Scholar 

  5. Anadere I., Chmiel H., Hess H., Thurston G.B.: Clinical blood rheology. Biorheology 16, 171–178 (1979)

    Google Scholar 

  6. Bagchi P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)

    Article  Google Scholar 

  7. Bagchi P., Johnson P., Popel A.: Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127, 1070–1080 (2005)

    Article  Google Scholar 

  8. Baumler H., Neu B., Donath E., Kiesewetter H.: Basic phenomena of red blood cell rouleaux formation. Biorheology 36, 439–442 (1999)

    Google Scholar 

  9. Beaucourt J., Rioual F., Seon T., Biben T., Misbah C.: Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004)

    Article  Google Scholar 

  10. Biben T., Misbah C.: Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67, 031908 (2003)

    Article  Google Scholar 

  11. Boffi D., Gastaldi L.: A finite element approach for the immersed boundary method. Comput. Struct. 81, 491–501 (2003)

    Article  MathSciNet  Google Scholar 

  12. Boffi D., Gastaldi L., Heltai L.: Numerical stability of the finite element immersed boundary method. Math. Mod. Meth. Appl. Sci. 17, 1479–1505 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boffi D., Gastaldi L., Heltai L.: On the CFL condition for the finite element immersed boundary method. Comput. Struct. 85, 775–783 (2007)

    Article  MathSciNet  Google Scholar 

  14. Boffi D., Gastaldi L., Heltai L., Peskin C.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Eng. 197, 2210–2231 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braasch D.: Red cell deformability in capillary flow. Physiol. Rev. 51(4), 679–701 (1971)

    Google Scholar 

  16. Braunmüller, S.: Viskoelastische Deformation roter Blutkörperchen. Master’s Thesis. Institut für Physik, Universität Augsburg, 2007

  17. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin, Heidelberg, New York, NY (1991)

    Book  MATH  Google Scholar 

  18. Chabanel A., Chien S., Reinhart W.: Increased resistance to membrane deformation of shape-transformed human red blood cell. Blood 69(3), 739 (1987)

    Google Scholar 

  19. Chabanel A., Flamm M., Sung K.L.P., Lee M.M., Schachter D., Chien S.: Influence of cholesterol content on red cell membrane viscosity and fluidity. Biophys. J. 44, 171–176 (1983)

    Article  Google Scholar 

  20. Chasis J.A., Mohandas N.: Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations. J. Cell. Biol. 103, 343–350 (1986)

    Article  Google Scholar 

  21. Chien S.: Red cell deformability and its relevance to blood flow. Ann. Rev. Physiol. 49, 177 (1987)

    Article  Google Scholar 

  22. Chien S.: Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–978 (1970)

    Article  Google Scholar 

  23. Chien S., Reinhart W.: Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape. Blood 67(4), 1110 (1986)

    Google Scholar 

  24. Chmiel H., Anadere I., Walitza E.: The determination of blood viscoelasticity in clinical hemorheology. Clin. Hemorheol. 10, 363–374 (1990)

    Google Scholar 

  25. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA (2002)

    Book  Google Scholar 

  26. Cokelet G.R.: Rheology and hemodynamics. Ann. Rev. Physiol. 42, 311–324 (1980)

    Article  Google Scholar 

  27. Cooper R.A.: Anemia with spur cells: a red cell defect acquired in serum and modified in the circulation. J. Clin. Inv. 48, 1820–1831 (1969)

    Article  Google Scholar 

  28. Danker G., Biben T., Podgorski T., Verdier C., Misbah C.: Dynamics and rheology of a dilute suspension of vesicles: higher-order theory. Phys. Rev. E 76, 041905 (2007)

    Article  Google Scholar 

  29. Danker G., Misbah C.: Rheology of dilute suspensions of vesicles. Phys. Rev. Lett. 98, 088104 (2007)

    Article  Google Scholar 

  30. Danker G., Verdier C., Misbah C.: Rheology and dynamics of vesicles suspensions in comparison with droplet emulsion. J. Non-Newtonian Fluid Mech. 152, 156–167 (2008)

    Article  MATH  Google Scholar 

  31. de Haas K., Bloom C., van den Ende D., Duits M., Mellema J.: Deformation of giant lipid bilayer vesicles in shear flow. Phys. Rev. E 56, 7132 (1997)

    Article  Google Scholar 

  32. Dumez H., Reinhardt W.H., Guentes G., de Bruijn E.A.: Human red blood cells: rheological aspects, uptake and release of cytotoxic drugs. Crit. Rev. Clin. Lab. Sci. 41(2), 159–188 (2004)

    Article  Google Scholar 

  33. Dupin M.M., Halliday I., Care C.M., Alboul L., Munn L.L.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)

    Article  Google Scholar 

  34. Eggleton C.D., Popel A.S.: Large deformation of red blood cell ghosts in simple shear flow. Phys. Fluids 10, 1834–1845 (1998)

    Article  Google Scholar 

  35. Evans E.A., Fung Y.C.: Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335–347 (1972)

    Article  Google Scholar 

  36. Fischer T., Schmid-Schönbein H.: Tank treading motion of red blood cell membranes in viscometric flow: behavior of intracellular and extracellular markers. Blood Cells 3, 351–365 (1977)

    Google Scholar 

  37. Fischer T.M., Stöhr-Liesen M., Schmid-Schönbein H.: The red cell as a fluid droplet: tank treading-like motion of the human erythrocyte membrane in shear flow. Science 202, 894–896 (1978)

    Article  Google Scholar 

  38. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  39. Hochmuth R.M., Waugh R.E.: Erythrocyte membrane elasticity and viscosity. Ann. Rev. Physiol. 49, 209–219 (1987)

    Article  Google Scholar 

  40. Isogai Y., Ikemoto S., Kuchiba K., Ogawa J., Yokose T.: Abnormal blood viscoelasticity in diabetic microangiopathy. Clin. Hemorheol. 11, 175–182 (1991)

    Google Scholar 

  41. Kantsler V., Steinberg V.: Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 95, 258101 (2005)

    Article  Google Scholar 

  42. Keller S.R., Skalak R.: Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27 (1982)

    Article  MATH  Google Scholar 

  43. Khodadad J.K., Waugh R.E., Podolski J.L., Steck T.L.: Remodeling the shape of the skeleton in the intact red cell. Biophys. J. 70, 1036–1044 (1996)

    Article  Google Scholar 

  44. Kraus M., Wintz W., Seifert U., Lipowsky R.: Fluid vesicles in shear flow. Phys. Rev. Lett. 77, 3685 (1996)

    Article  Google Scholar 

  45. Lee C.J., Kim K., Park H., Song J., Lee C.: Rheological properties of erythrocytes from male hypercholesterolemia. Microvasc. Res. 67, 133–138 (2004)

    Article  MATH  Google Scholar 

  46. Liu W.K., Liu Y., Farrell D., Zhang L., Wang X.S., Fukui Y., Patankar N., Zhang Y., Bajaj C., Lee J., Hong J., Chen X., Hsu H.: Immersed finite element method and its applications to biological methods. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu W.K., Liu Y.: Rheology of red blood cell aggregates by computer simulation. J. Comp. Phys. 220, 139–154 (2006)

    Article  MATH  Google Scholar 

  48. Marascalco P.J., Ritchie S.P., Snyder T.A., Kameneva M.V.: Development of standard tests to examine viscoelastic properties of blood of experimental animals for pediatric mechanical support device evaluation. ASAIO 52, 567–574 (2006)

    Article  Google Scholar 

  49. More R.B., Thurston G.B.: Intrinsic viscoelasticity of blood cell suspensions: effects of erythrocyte deformability. Biorheology 24, 297–309 (1987)

    Google Scholar 

  50. Noguchi H., Gompper G.: Fluid vesicles with viscous membranes in shear flow. Phy. Rev. Lett. 93, 258102 (2004)

    Article  Google Scholar 

  51. Noguchi H., Gompper G.: Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Nat. Acad. Sci. USA 102, 14159–14164 (2005)

    Article  Google Scholar 

  52. Noguchi H., Gompper G.: Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103 (2007)

    Article  Google Scholar 

  53. Noguchi H., Gompper G., Schmid L., Wixforth A., Franke T.: Dynamics of fluid vesicles in flow through structured microchannels. Eur. Phys. Lett 89, 28002 (2010)

    Article  Google Scholar 

  54. Owen J.S., Brown D.J.C., Harry D.S., Mcintyre N.: Erythrocyte echinocytosis in liver disease: role of abnormal plasma high density llipoproteins. J. Clin. Inv. 76, 2275–2285 (1985)

    Article  Google Scholar 

  55. Pan T.-W., Wang T.: Dynamical simulation of red blood cell rheology in microvessels. Int. J. Numer. Anal. Model. 6, 455–473 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Peskin C.: Numerical analysis of flood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  57. Peskin, C.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Google Scholar 

  58. Peskin C., McQueen D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 372–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peskin C., Printz B.F.: Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105, 33–46 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pozrikidis C.: Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123–152 (1995)

    Article  MATH  Google Scholar 

  61. Pozrikidis C.: Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269–291 (2001)

    Article  MATH  Google Scholar 

  62. Pozrikidis C.: Modeling and Simulation of Capsules and Biological Cells. Chapman & Hall/CRC, Boca Raton, FL (2003)

    Book  MATH  Google Scholar 

  63. Pozrikidis C.: Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503 (2005)

    Article  MathSciNet  Google Scholar 

  64. Rioual F., Biben T., Misbah C.: Analytical analysis of a vesicle tumbling under a shear flow. Phys. Rev. E 69, 061914 (2004)

    Article  Google Scholar 

  65. Ripoli M., Mussawisade K., Winkler R.G., Gompper G.: Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett. 68, 106–112 (2004)

    Article  Google Scholar 

  66. Rosar M.E., Peskin C.S.: Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. N. Y. J. Math. 7, 281–302 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Secomb T.W., Hsu R.: Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophys. J. 71, 1095–1101 (1996)

    Article  Google Scholar 

  68. Seifert U.: Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876–879 (1999)

    Article  Google Scholar 

  69. Seifert U.: Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405 (1999)

    Article  Google Scholar 

  70. Shelby P., Rathod P.K., Ganesan K., Whiteand J.M., Chiu D.T.: A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes. PNAS 100(25), 114618–114622 (2003)

    Article  Google Scholar 

  71. Skalak R., Chien S.: Handbook of Bioengineering. McGraw-Hill, New York, NY (1987)

    Google Scholar 

  72. Stoltz J., Singh M., Riha P.: Hemorheology in Practice. IOS Press, Amsterdam (1999)

    Google Scholar 

  73. Tao Y.-G., Götze I.O., Gompper G.: Multiparticle collision dynamics modeling of viscoelastic fluids. J. Chem. Phys. 128, 144902 (2008)

    Article  Google Scholar 

  74. Tartar L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York, NY (2007)

    Google Scholar 

  75. Thurston G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Article  Google Scholar 

  76. Thurston G.B.: Effects of viscoelasticity of blood on wave propagation in the circulation. J. Biomech. 9, 13–20 (1976)

    Article  Google Scholar 

  77. Thurston G.B.: Viscoelastic properties of blood and blood analogs. In: Hoew, T.C. (eds) Advances in Hemodynamics and Hemorheology, pp. 1–30. JAI Press, Greenwich (1996)

    Google Scholar 

  78. Tsubota K., Wada S., Yamaguchi T.: Simulation study on effects of hematocrit on blood flow properties using particle method. J. Biomech. Sci. Eng. 1, 159–170 (2006)

    Article  Google Scholar 

  79. Tsukada K., Minamitani H., Oshio C., Sekizuka E.: Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high speed video camera system. Microvasc. Res. 61, 231–239 (2001)

    Article  Google Scholar 

  80. Vitkova V., Mader M., Biben T., Podgorski T.: Tumbling of lipid vesicles, enclosing a viscous fluid, under a shear flow. J. Optoelectr. Adv. Mater. 7, 261 (2005)

    Google Scholar 

  81. Vitkova, V., Mader, M., Misbah, C., Podgorski, T.: Rheology of dilute suspensions of vesicles and red blood cells. arXiv:0704.4287vl[cond-mat.soft] (2007)

  82. Vitkova V., Mader M., Polack B., Misbah C., Podgorski T.: Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95, L33–L35 (2008)

    Article  Google Scholar 

  83. Wang T., Pan T.-W., Xing Z.W., Glowinski R.: Numerical simulation of red blood cell rouleaus in microchannels. Phys. Rev. E 79, 041916-1–041916-11 (2009)

    Google Scholar 

  84. Zhang J., Johnson P.C., Popel A.S.: Red blood cell aggregation and dissociation in shear flows simulated by the lattice Boltzmann method. J. Biomech. 41, 47–55 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H. W. Hoppe.

Additional information

Communicated by Gabriel Wittum.

Ronald H.W. Hoppe: Acknowledge support by the German National Science Foundation DFG within the Priority Programs SPP 1253 and SPP 1506, by the NSF through the grants DMS-0707602 and DMS-0914788, by the Federal Ministry for Education and Research BMBF within the research projects ‘FROPT’ and ‘MeFreSim’, and by the European Science Foundation within the Research Networking Programme ‘OPTPDE’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, T., Hoppe, R.H.W., Linsenmann, C. et al. Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows. Comput. Visual Sci. 14, 167–180 (2011). https://doi.org/10.1007/s00791-012-0172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0172-1

Keywords

Navigation