Skip to main content
Log in

A multigrid finite element method for reaction-diffusion systems on surfaces

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We develop a multigrid finite element approach to solve PDE’s on surfaces. The multigrid approach involves the same weights for restriction and prolongation as in the case of planar domains. Combined with the concept of parametric finite elements the approach thus allows to reuse code initially developed to solve problems on planar domains to solve the corresponding problem on surfaces. The method is tested on a non-linear reaction-diffusion system on stationary and evolving surfaces, with the normal velocity of the evolving surface depending on the reaction-diffusion system. As a reference model the Schnakenberg system is used, offering non-linearity and algebraic simplicity on one hand, and quantitative reference data on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dziuk G., Elliot C.: Finite elements on evolving surfaces. IMA J. Num. Anal. 27(2), 262–292 (2007)

    Article  MATH  Google Scholar 

  2. Vey S., Voigt A.: Amdis: adaptive multidimensional simulations. Com. Vis. Sci. 10, 57–67 (2007)

    Article  MathSciNet  Google Scholar 

  3. Dziuk G., Elliot C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25(4), 385–407 (2007)

    MathSciNet  Google Scholar 

  4. Stöcker C., Voigt A.: Geodesic evolution laws—a level set approach. SIAM J. Imag. Sci. 1(4), 379–399 (2008)

    Article  MATH  Google Scholar 

  5. Bertalmio M., Cheng L., Osher S., Sapiro G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Greer B., Bertozzi A., Sapiro G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dziuk G., Elliot C.M.: Eulerian finite element method for parabolic pdes on implicit surfaces. Interf. Free Boundaries 10(1), 119–138 (2008)

    Article  MATH  Google Scholar 

  8. Stöcker C., Voigt A.: A level set approach to anisotropic surface evolution with free adatoms. SIAM J. Appl. Math. 69(1), 64–80 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rätz A., Voigt A.: Pde’s on surfaces—a diffuse interface approach. Commun. Math. Sci. 4, 575–590 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Rätz A., Voigt A.: A diffuse-interface approximation for surface diffusion including adatoms. Nonlinearity 20, 575–590 (2007)

    Article  Google Scholar 

  11. Lowengrub J., Rätz A., Voigt A.: Phase field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79(3), 031,926 (2009)

    Article  Google Scholar 

  12. Schwartz P., Adalsteinsson D., Coletta P., Arkin A., Onsum M.: Numerical computation of diffusion on a surface. Proc. Nat. Acad. Sci. USA 102(32), 11151–11156 (2005)

    Article  Google Scholar 

  13. Ruuth S., Merriman B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943–1961 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elliott, C., Stinner, B.: Analysis of a diffuse interface approach to an advection diffusion equation on a moving surface. Math. Meth. Appl. Sci. p. to appear (2009)

  15. Nemitz O., Nielson M., Rumpf M., Whitaker R.: Finite element methods for very large, dynamic tubular grid encoded implicit surfaces. SIAM J. Sci. Comput. 31, 2259–2281 (2009)

    Article  Google Scholar 

  16. Holst M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(14), 139–191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Aksoylu B., Khodakovsky A., Schröder P.: Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26(4), 1146–1165 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kornhuber R., Yserentant H.: Multigrid methods for discrete elliptic problems on triangular surfaces. Comput. Vis. Sci. 11(4-6), 251–257 (2008)

    Article  MathSciNet  Google Scholar 

  19. Turing A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B 237, 37–72 (1952)

    Article  Google Scholar 

  20. Gierer A., Meinhardt H.: A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972)

    Article  Google Scholar 

  21. Gray P., Scott S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor. isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)

    Article  Google Scholar 

  22. Schnakenberg J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  23. Murray, J. (ed.): Mathematical Biology (1989)

  24. Madzvamuse A.: Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214(1), 239–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gomatam J., Amdjadi F.: Reaction-diffusion equations on a sphere: meandering of spiral waves. Phys. Rev. E 56, 3913–3919 (1997)

    Article  MathSciNet  Google Scholar 

  26. Varea C., Aragon J.L., Barrio R.A.: Turing patterns on a sphere. Phys. Rev. E 60(4), 4588–4592 (1999)

    Article  Google Scholar 

  27. Yagisita H., Mimura M., Yamada M.: Spiral wave behaviors in an excitable reaction–diffusion system on a sphere. Physica D 124(1-3), 126–136 (1998)

    Article  MATH  Google Scholar 

  28. Chaplain M., Ganesh M., Graham I.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Bio. 42(5), 387–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pudykiewicz J.A.: Numerical solution of the reaction–advection–diffusion equation on the sphere. J. Comput. Phys. 213(1), 358–390 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gjorgjeva, J., Jacobsen, J.: Turing patterns on growing spheres: the exponential case. Dis. Cont. Dyn. Sys., Supp. pp. 436–445 (2007)

  31. Levoy, M., Rusinkiewicz, S., Ginzton, M., Ginsberg, J., Pulli, K., Koller, D., Anderson, S., Shade, J., Pereira, L., Davis, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: SIGGRAPH 2000 Proceedings, pp. 131–144 (2000)

  32. Kondo S., Shirota H.: Theoretical analysis of mechanisms that generate the pigmentation pattern of animals. Semin. Cell. Dev. Biol. 20(1), 82–89 (2009)

    Article  Google Scholar 

  33. Murray J.: How the leopard gets its spots. Sci. Am. 258(3), 80–87 (1988)

    Article  Google Scholar 

  34. Shoji H., Mochizuki A., Iwasa Y., Hirata M., Watanabe T., Hioki S., Kondo S.: Origin of directionality in the fish stripe pattern. Devel. Dyn. 226(4), 627–633 (2003)

    Article  Google Scholar 

  35. Bänsch E., Haußer F., Lakkis O., Li B., Voigt A.: Finite element method for epitaxial growth with attachment–detachment kinetics J. Comput. Phys. 194(2), 409–434 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Bänsch E., Morin P., Nochetto R.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Haußer F., Voigt A.: A discrete scheme for parametric anisotropic surface diffusion. J. Sci. Comput. 30(2), 223–235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sick S., Reinker S., Timmer J., Schlake T.: WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804), 1447–1450 (2006)

    Article  Google Scholar 

  39. Yu M., Wu P., Widelitz R., Chuong C.: The morphogenesis of feathers. Nature 420(6913), 308–312 (2002)

    Article  Google Scholar 

  40. Li X.J.L., Rätz A.A.V.: Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7(1), 81–107 (2009)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Landsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsberg, C., Voigt, A. A multigrid finite element method for reaction-diffusion systems on surfaces. Comput. Visual Sci. 13, 177–185 (2010). https://doi.org/10.1007/s00791-010-0136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-010-0136-2

Keywords

Navigation