Skip to main content
Log in

All-floating coupled data-sparse boundary and interface-concentrated finite element tearing and interconnecting methods

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

Efficient and robust tearing and interconnecting solvers for large scale systems of coupled boundary and finite element domain decomposition equations are the main topic of this paper. In order to reduce the complexity of the finite element part from \({\mathcal{O}}((H/h)^{d})\) to \({\mathcal{O}}((H/h)^{d-1})\) , we use an interface-concentrated hp finite element approximation. The complexity of the boundary element part is reduced by data-sparse approximations of the boundary element matrices. Finally, we arrive at a parallel solver whose complexity behaves like \({\mathcal{O}}((H/h)^{d-1})\) up to some polylogarithmic factor, where H, h, and d denote the usual scaling parameters of the subdomains, the minimal discretization parameter of the subdomain boundaries, and the spatial dimension, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf M. (2000). Approximation of boundary element matrices. Numer. Math. 86: 565–589

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebendorf M. (2005). Hierarchical LU decomposition based preconditioners for BEM. Computing 74: 225–247

    Article  MATH  MathSciNet  Google Scholar 

  3. Bebendorf M. and Rjasanow S. (2003). Adaptive low-rank approximation of collocation matrices. Computing 70: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  4. Beuchler, S., Eibner, T., Langer, U.: Primal and dual interface concentrated iterative substructuring methods. RICAM Report 2007-07, Johann Radon Institute of Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, 2007 (submitted 2007)

  5. Cheng H., Greengard L. and Rokhlin V. (1999). A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155(2): 468–498

    Article  MATH  MathSciNet  Google Scholar 

  6. Computer Science Department, University of Basel, Switzerland. PARDISO. Parallel Sparse Direct Linear Solver. User Guide Version 3.0., 2005. www.computational.unibas.ch/cs/scicomp

  7. Dostál Z., Horák D. and Kuc̆era R. (2006). Total FETI—An easier implementable variant of the FETI method for numerical solution of elliptic PDE. Comm. Numer. Methods Eng. 22(12): 1155–1162

    Article  MATH  Google Scholar 

  8. Eibner T. and Melenk J.M. (2007). A local error analysis of the boundary-concentrated hp-FEM. IMA J. Numer. Anal. 27(1): 752–778

    MathSciNet  Google Scholar 

  9. Eibner, T., Melenk, J.M.: Multilevel preconditioning for the boundary concentrated hp-FEM. Comp. Meth. Mech. Eng. 196:3713–2725 (2007) doi:10.1016/j.cma.2006.10.034

    Article  MathSciNet  Google Scholar 

  10. Farhat C. and Roux F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Eng. 32: 1205–1227

    Article  MATH  Google Scholar 

  11. Haase, G., Heise, B., Kuhn, M., Langer, U.: Adaptive domain decomposition methods for finite and boundary element equations. In: Wendland, W.L. (ed.) Boundary Element Topics, pp. 121–147. Springer, Heidelberg

  12. Hackbusch W. (1999). A sparse matrix arithmetic based on \(\mathcal H\) -matrices: I. Introduction to \(\mathcal H\). Computing 62(2): 89–108

    Article  MATH  MathSciNet  Google Scholar 

  13. Hackbusch W. and Khoromskij B.N. (2000). A sparse \(\mathcal H\) -matrix arithmetic: II. Approximation to multi-dimensional problems. Computing 64: 21–47

    MATH  MathSciNet  Google Scholar 

  14. Hackbusch W., Khoromskij B.N. and Kriemann R. (2005). Direct Schur complement method by domain decomposition based on \(\mathcal H\) -matrix approximation. Comput. Vis. Sci. 8(3–4): 179–188

    Article  MathSciNet  Google Scholar 

  15. Hackbusch W. and Nowak Z.P. (1989). On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4): 463–491

    Article  MATH  MathSciNet  Google Scholar 

  16. Khoromskij B.N. and Melenk J.M. (2002). An efficient direct solver for the boundary concentrated FEM in 2D. Computing 69: 91–117

    Article  MATH  MathSciNet  Google Scholar 

  17. Khoromskij B.N. and Melenk J.M. (2003). Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41(1): 1–36

    Article  MATH  MathSciNet  Google Scholar 

  18. Klawonn A. and Widlund O.B. (2001). FETI and Neumann–Neumann iterative substructuring methods: connections and new results. Comm. Pure Appl. Math. 54: 57–90

    Article  MATH  MathSciNet  Google Scholar 

  19. Langer U., Of G., Steinbach O. and Zulehner W. (2007). Inexact data-sparse boundary element tearing and interconnecting methods. SIAM J. Sci. Comp. 29(1): 290–314

    Article  MATH  MathSciNet  Google Scholar 

  20. Langer U. and Pechstein C. (2006). Coupled finite and boundary element tearing and interconnecting methods applied to. ZAMM 86(12): 915–931

    Article  MATH  MathSciNet  Google Scholar 

  21. Langer U. and Pusch D. (2005). Data-sparse algebraic multigrid methods for large scale boundary element equations. Appl. Numer. Math. 54: 406–424

    Article  MATH  MathSciNet  Google Scholar 

  22. Langer, U., Pusch, D.: Convergence analysis of geometrical multigrid methods for solving data-sparse boundary element equations. Comput. Vis. Sci. (2007) available online: doi:10.1007/s00791-007-0067-8 (2007)

  23. Langer U. and Steinbach O. (2003). Boundary element tearing and interconnecting method. Computing 71(3): 205–228

    Article  MATH  MathSciNet  Google Scholar 

  24. Langer, U., Steinbach, O.: Coupled boundary and finite element tearing and interconnecting methods. In: Kornhuber, R., Hoppe, R., Periaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Lecture Notes in Computational Sciences and Engineering. In: Proceedings of the 15th International Conference on Domain Decomposition Methods, Berlin, July 2003, vol. 40, pp. 83–97. Springer, Heidelberg (2004)

  25. Langer, U., Steinbach, O.: Coupled finite and boundary element domain decomposition methods. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis: Mathematical Aspects and Application, vol. 29 of Lecture Notes in Applied and Computational Mechanics, pp. 29–59. Springer, Berlin (2007)

  26. Of, G.: BETI-Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. PhD thesis, Universität Stuttgart, Germany, January 2006 (in German)

  27. Of, G.: The all-floating BETI method: numerical results. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, vol. 60 of Lecture Notes in Computational Science and Engineering, pp. 294–302. Springer, Heidelberg, U. Langer (2008)

  28. Pechstein, C.: Analysis of dual and dual-primal tearing and interconnecting methods in unbounded domains. SFB report 2007-15, special research program on numerical and symbolic scientific computing, Johannes Kepler University Linz, Austria, August (2007)

  29. Rjasanow S. and Steinbach O. (2007). The Fast Solution of Boundary Integral Equations. Springer, New York

    MATH  Google Scholar 

  30. Rokhlin V. (1985). Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2): 187–207

    Article  MATH  MathSciNet  Google Scholar 

  31. Steinbach, O.: OSTBEM—a boundary element software package. Technical report, University of Stuttgart (2000)

  32. Steinbach O. (2003). Artificial multilevel boundary element preconditioners. Proc. Appl. Math. Mech. 3: 539–542

    Article  MathSciNet  Google Scholar 

  33. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, Heidelberg, Berlin (2008)

    MATH  Google Scholar 

  34. Steinbach O. and Wendland W.L. (1998). The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9: 191–216

    Article  MATH  MathSciNet  Google Scholar 

  35. Tong C.H., Chan T.F. and Kuo C.-C.J. (1991). A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Stat. Comput. 12(6): 1486–1495

    Article  MATH  MathSciNet  Google Scholar 

  36. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2004)

  37. Yserentant H. (1999). Coarse grid spaces for domains with a complicated boundary. Numer. Algor 21(1-4): 387–392

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Langer.

Additional information

Communicated by G. Wittum.

Dedicated to Wolfgang Hackbusch on the occasion of his 60th birthday.

Ulrich Langer has been supported in parts by the Austrian Science Fund (FWF) under the grant P19255; Clemens Pechstein was supported by the Austrian Science Fund (FWF) under the grant SFB F1306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, U., Pechstein, C. All-floating coupled data-sparse boundary and interface-concentrated finite element tearing and interconnecting methods. Comput. Visual Sci. 11, 307–317 (2008). https://doi.org/10.1007/s00791-008-0100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0100-6

Keywords

Mathematics Subject Classification (2000)

Navigation