Skip to main content
Log in

Computational aspects of the stochastic finite element method

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

We present an overview of the stochastic finite element method with an emphasis on the computational tasks involved in its implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R.J. (1981). The Geometry of Random Fields. Wiley, London

    MATH  Google Scholar 

  2. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Birkhäuser (2005)

  3. Babuška I. and Chleboun J. (2001). Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions.. Math. Comput. 71(240): 1339–1370

    Google Scholar 

  4. Babuška I., Tempone R. and Zouraris G.E. (2004). Galerkin finite element approximations of stochastic elliptic partial differential equations.. SIAM J. Numer. Anal. 42(2): 800–825

    Article  MathSciNet  Google Scholar 

  5. Babuška I., Tempone R. and Zouraris G.E. (2005). Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation.. Comput. Meth. Appl. Mech. Eng. 194(12–16): 1251–1294

    Article  Google Scholar 

  6. Börm S., Grasedyck L. and Hackbusch W. (2003). Introduction to hierarchical matrices with applications.. Eng Anal Bound. Elem. 27: 405–422

    Article  MATH  Google Scholar 

  7. Christiakos G. (1992). Random Field Models in Earth Sciences.. Academic, San Diego

    Google Scholar 

  8. Deb, M.K.: Solution of stochastic partial differential equations (spdes) using Galerkin method: theory and applications. Ph.D. thesis, The University of Texas, Austin (2000)

  9. Deb M.K., Babuška I.M. and Oden J.T. (2001). Solution of stochastic partial differential equations using Galerkin finite element techniques.. Comput. Meth. Appl. Mech. Eng. 190: 6359–6372

    Article  MATH  Google Scholar 

  10. de Sturler E. (1999). Truncation strategies for optimal Krylov subspace methods. SIAM J. Numer. Anal. 36(3): 864–889

    Article  MathSciNet  Google Scholar 

  11. Eiermann M., Ernst O.G. and Schneider O. (2000). Analysis of acceleration strategies for restarted minimal residual methods.. J. Comput. Appl. Math. 123: 261–292

    Article  MATH  MathSciNet  Google Scholar 

  12. Elman H.C., Ernst O.G., O’Leary D.P. and Stewart M. (2005). Efficient iterative algorithms for the stochastic finite element method with applications to acoustic scattering.. Comput. Meth. Appl. Mech. Eng. 194: 1037–1055

    Article  MATH  MathSciNet  Google Scholar 

  13. Ernst, O.G., Ullmann, E.: Efficient iterative solution of stochastic finite element equations. (in press)

  14. Frauenfelder P., Schwab C. and Todor R.A. (2005). Finite elements for elliptic problems with stochastic coefficients.. Comput. Meth. Appl. Mech. Eng. 194: 205–228

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghanem R. and Spanos P.D. (1991). Stochastic Finite Elements: A Spectral Approach. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  16. Ghanem R.G. and Brzkala V. (1996). Stochastic finite element analysis of randomly layered media.. J. Eng. Mech. 129(3): 289–303

    MATH  Google Scholar 

  17. Ghanem R.G. and Kruger R.M. (1996). Numerical solution of spectral stochastic finite element systems.. Comput. Meth. Appl. Mech. Eng. 129: 289–303

    Article  MATH  Google Scholar 

  18. Hida T., Potthoff J. and Streit L. (1993). White Noise Analysis—An Infinite Dimensional Calculus. Kluwer, Dordrecht

    Google Scholar 

  19. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations—A Modeling White Noise Functional Approach. Birkhäuser (1996)

  20. Karhunen K. (1947). Über lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. Ser. A. I. 37: 3–79

    Google Scholar 

  21. Keese, A.: A review of recent developments in the numerical solution of stochastic partial differential equations. Tech. Rep. Informatikbericht Nr.: 2003-6, Universität Braunschweig, Institut für Wissenschaftliches Rechnen (2003)

  22. Keese, A.: Numerical solution of systems with stochastic uncertainties—a general purpose framework for stochastic finite elements. Ph.D. thesis, TU Braunschweig, Germany, Fachbereich Mathematik und Informatik (2004)

  23. Lehoucq R.B., Sorensen D.C. and Yang C. (1998). ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia

    MATH  Google Scholar 

  24. Liu J.S. (2001). Monte Carlo. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  25. Loève, M.: Fonctions aléatoires de second ordre. In: Processus Stochastic et Mouvement Brownien. Gauthier Villars, Paris (1948)

  26. Loève M. (1977). Probability Theory, vol II. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. Matthies H.G., Brenner C., Bucher C.G. and Soares C.G. (1997). Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct. Saf. 19: 283–336

    Article  Google Scholar 

  28. Matthies H.G. and Bucher C. (1999). Finite elements for stochastic media problems.. Comput. Meth. Appl. Mech. Eng. 168: 3–17

    Article  MATH  MathSciNet  Google Scholar 

  29. Matthies H.G. and Keese A. (2005). Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations.. Comput. Meth. Appl. Mech. Eng. 194: 1295–1331

    Article  MATH  MathSciNet  Google Scholar 

  30. Papoulis A. and Pilla S.U. (2002). Probability, Random Variables and Stochastic Processes 4th edn. McGraw-Hill, New York

    Google Scholar 

  31. Parks, M., de Sturler, E., Mackey, G., Johnson, D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. Technical Report UIUCDCS-R-2004-2421(CS), University of Illinois (2004)

  32. Parlett B.N. (1998). The Symmetric Eigenvalue Problem. SIAM, Philadelphia

    MATH  Google Scholar 

  33. Pellissetti M.F. and Ghanem R.G. (2000). Iterative solution of systems of linear equations arising in the context of stochastic finite elements.. Adv. Eng. Softw. 31: 607–616

    Article  MATH  Google Scholar 

  34. Saad Y. (1992). Numerical Methods for Large Eigenvalue Problems. Halsted Press, New York

    MATH  Google Scholar 

  35. Schuëller G.I. (1997). A state-of-the-art report on computational stochastic mechanics.. Probab. Eng. Mech. 12(4): 197–321

    Article  Google Scholar 

  36. Schwab C. and Todor R.A. (2003). Sparse finite elements for elliptic problems with stochastic data.. Numer. Math. 95: 707–734

    Article  MATH  MathSciNet  Google Scholar 

  37. Sudret, B., Kiureghian, A.D.: Stochastic finite element methods and reliability: a state-of-the-art report. Technical Report on UCB/SEMM-2000/08, Department of Civil and Environmental Engineering, UC Berkeley (2000)

  38. Theting T.G. (2000). Solving Wick–stochastic boundary value problems using a finite element method.. Stoch. Stoch. Rep. 70(3–4): 241–270

    MATH  MathSciNet  Google Scholar 

  39. Trèves F. (1967). Topological Vector Spaces, Distributions and Kernels. Academic, New York

    MATH  Google Scholar 

  40. Våge G. (1998). Variational methods for PDEs applied to stochastic partial differential equations. Math. Scand. 82: 113–137

    MathSciNet  Google Scholar 

  41. Vanmarcke E. (1983). Random Fields: Analysis and Synthesis. MIT Press, Cambridge

    Google Scholar 

  42. Whittle, P.: On stationary processes in the plane. Biometrika 41(434–449) (1954)

  43. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(897–936) (1938)

  44. Wu K. and Simon H. (2000). Thick-restart lanczos method for large symmetric eigenvalue problems.. SIAM J. Matrix Anal. Appl. 22(2): 602–616

    Article  MATH  MathSciNet  Google Scholar 

  45. Xiu D. and Karniadakis G.E. (2002). Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos.. Comput. Meth. Appl. Mech. Eng. 191: 4927–4948

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver G. Ernst.

Additional information

Communicated by K. Mikula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiermann, M., Ernst, O.G. & Ullmann, E. Computational aspects of the stochastic finite element method. Comput. Visual Sci. 10, 3–15 (2007). https://doi.org/10.1007/s00791-006-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0047-4

Keywords

Mathematics Subject Classification (2000)

Navigation