Skip to main content
Log in

PostDock: A novel visualization tool for the analysis of molecular docking

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

“PostDock”, a new visualization tool for the analysis and comparison of molecular docking results is described. It processes a docking results database and displays an interactive pseudo-3D snapshot of multiple ligand docking poses such that their docking energies and docking poses are visually encoded for rapid assessment. The docking energies are represented by a transparency scale whereas the docking poses are encoded by a color scale. The applications of PostDock for ligand–protein docking and for a novel molecular design approach termed “reverse-docking” are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askew, B., Ballester, P., Buhr, C., Jeong, K.S., Jones, S., Parris, K. Williams, K., Rebek, J. Jr.: Molecular recognition with convergent functional groups. VI. Synthetic and structural studies with a model receptor for nucleic acid components. J. Am. Chem. Soc. 111, 1082–1090 (1989)

    Article  Google Scholar 

  2. Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Ann. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003)

    Article  Google Scholar 

  3. Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A.: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993)

    Article  Google Scholar 

  4. Camacho, J.C., Gatchell, D.W., Kimura, S.R., Vajda, S.: Scoring docked conformations generated by rigid body protein protein docking. Proteins 40, 525–537 (2000)

    Article  Google Scholar 

  5. Case D.A., et al. (2002). AMBER 7. University of California, San Francisco

    Google Scholar 

  6. Ding, J., Das, K., Moereels, H., Koymans, L., Andries, K., Janssen, P.A.J., Hughes, S.H., Arnold, E.: Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat. Struct. Biol. 2, 407 (1995) PDB ID: 1HNV

    Google Scholar 

  7. Eriksson, M.A.L., Pitera, J., Kollman, P.A.: Prediction of the binding free energies of new TIBO-like hiv-1 reverse transcriptase inhibitors using a combination of PROFEC, PB/SA, CMC/MD, and free energy calculations. J. Med. Chem. 42, 868–881 (1999)

    Article  Google Scholar 

  8. Frisch M.J., et al. (1998). Gaussian, Inc. Pittsburgh, PA

  9. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002)

    Article  Google Scholar 

  10. Jones, G., Willet, P., Glen, R.C., Leach, A.R., Taylor, R.: development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997)

    Article  Google Scholar 

  11. Lonergan, D.G., Riego, J., Deslongchamps, G.: A convergent hydroxyimide module for molecular recognition. Tetrahedron Lett. 37, 6109–6112 (1996)

    Article  Google Scholar 

  12. Lonergan, D.G., Deslongchamps, G.: Tricyclic scaffolds for the rapid assembly of abiotic receptors. Tetrahedron 54, 14041–14052 (1998a)

    Article  Google Scholar 

  13. Lonergan, D.G., Deslongchamps, G., Tomas, S.: A remarkable adenine-binding cleft based on a hydroxyimide scaffold. Tetrahedron Lett. 39, 7861–7864 (1998b)

    Article  Google Scholar 

  14. Makino, S., Kuntz, I.D.: Automated flexible ligand docking method and it application for database search. J. Comput. Chem. 18, 1812–1825 (1997)

    Article  Google Scholar 

  15. MOE 2002.03: The Chemical Computing Group Inc., Montreal. http://www.chemcomp.com (2002)

  16. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem.19, 1639–1662 (1998)

    Article  Google Scholar 

  17. Rappé, A.K., Casewit, C.J.: Molecular Mechanics Across Chemistry. University Science Books: Sausalito, CA, pp. 22–24 (1997)

  18. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  Google Scholar 

  19. Weiser, J., Peter, S., Still, W.C.: Optimization of gaussian surface calculations and extension to solvent-accessible surface areas. J. Comp. Chem. 20, 688–703 (1999)

    Article  Google Scholar 

  20. Westhead, D.R., Clark, D.E., Murray, C.W.: A comparison of heuristic search algorithms for molecular docking. J. Comput. Aided Mol. Design. 11, 209–228 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislain Deslongchamps.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiley, E.A., Deslongchamps, G. PostDock: A novel visualization tool for the analysis of molecular docking. Comput. Visual Sci. 12, 1–7 (2009). https://doi.org/10.1007/s00791-006-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-006-0042-9

Keywords

Navigation