Skip to main content

Advertisement

Log in

Influence of age and diet consistency on the oral muscle pressure of orthodontically treated and untreated subjects with normal occlusion and comparison of their 3D facial shape

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

(1) To investigate the effect of age and diet consistency on maximum lips, tongue and cheek pressure of orthodontically treated and untreated subjects with normal, Class I dental occlusion, (2) to find out whether there is a muscle imbalance between anterior tongue and lip pressure in the same subjects at different ages and (3) to compare the 3D facial shape of treated and untreated individuals.

Material and methods

Subjects with normal occlusion were prospectively grouped into orthodontically treated/untreated and in children/adolescents/adults. Iowa Oral Performance Instrument was used to record the maximum muscle pressure. Two-way ANOVA and Tukey post hoc test analysed age-specific differences in muscle pressure. Two-way ANCOVA analysed the effect of diet consistency on muscle pressure. Lips and tongue imbalance was analysed using z-scores and 3D faces using a generalized Procrustes analysis.

Results

One hundred thirty-five orthodontically untreated and 114 treated participants were included. Muscle pressure was found to increase with age in both groups, except for the tongue in treated subjects. No differences in the balance between lips and tongue muscle pressure were found, but a higher cheek pressure in untreated adults (p<0.05) was observed. 3D facial shapes showed subtle differences. Untreated subjects with soft diet consistency showed lower lip pressure (p<0.05).

Conclusion

Oral muscle pressure of orthodontically treated patients without relapse does not differ from that of untreated patients with Class-I occlusion.

Clinical relevance

This study provides normative lip, tongue and cheek muscle pressure in subjects with normal occlusion, which can be used for diagnosis, treatment planning and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request. Data is located in the controlled access data storage of KU Leuven.

References

  1. Lambrechts H, De Baets E, Fieuws S, Willems G (2010) Lip and tongue pressure in orthodontic patients. Eur J Orthod 32(4):466–71. https://doi.org/10.1093/ejo/cjp137

    Article  PubMed  Google Scholar 

  2. Moss ML, Salentijn L (1969) The primary role of functional matrices in facial growth. Am J Orthod 55(6):566–77. https://doi.org/10.1016/0002-9416(69)90034-7

    Article  PubMed  Google Scholar 

  3. Profitt W, Fields H, Sarver D (2018) Contemporary orthodontics, 6th ed. Elsevier

    Google Scholar 

  4. Weinstein S, Haack DC, Morris LY, Snyder BB, Attaway HE, Weinstein Sam et al (1963) On an equilibrium theory of tooth position. Angle Orthod 33(1):1–26

    Google Scholar 

  5. Proffit WR (1978) Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod 48(3):175–86. https://doi.org/10.1043/0003-3219(1978)048%3c0175:ETRFIP%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  6. Littlewood SJ, Millett DDT, Doubleday BB, Bearn DD (2016) Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst Rev 2016(2):CD002283. https://doi.org/10.1002/14651858.CD002283

  7. Re M (1988) Force systems and tissue responses to forces in orthodontics and facial orthopedics. In: Rygh PMR (ed) Handbook of Orthodontics, 4th edn. Year Book Medical Publishers, Chicago, pp 306–11

    Google Scholar 

  8. Padmos JAD, Fudalej PS, Renkema AM (2018) Epidemiologic study of orthodontic retention procedures. Am J Orthod Dentofac Orthop 153(4):496–504. https://doi.org/10.1016/j.ajodo.2017.08.013

    Article  Google Scholar 

  9. Rajbhoj AA, Parchake P, Begnoni G, Willems G, Cadenas de Llano-Pérula M (2021) Dental changes in humans with untreated normal occlusion throughout lifetime: a systematic scoping review. Am J Orthod Dentofac Orthop 160(3):340–62. https://doi.org/10.1016/j.ajodo.2021.02.014

    Article  Google Scholar 

  10. Rajbhoj AA, Stroo M, Begnoni G, Willems G, de Llano-Perula MC (2022) Skeletal and soft-tissue changes in humans with untreated normal occlusion throughout lifetime: a systematic review. Odontology 111(2):263–309. https://doi.org/10.1007/s10266-022-00757-x

    Article  PubMed  Google Scholar 

  11. Larsson E, Øgaard B, Lindsten R, Holmgren N, Brattberg M, Brattberg L (2005) Craniofacial and dentofacial development in pigs fed soft and hard diets. Am J OrthodDentofac Orthop 128(6):731–739. https://doi.org/10.1016/j.ajodo.2004.09.025

    Article  Google Scholar 

  12. Begg PR (1954) Stone Age man’s dentition. Am J Orthod 40(5):373–83. https://doi.org/10.1016/0002-9416(54)90035-4

    Article  Google Scholar 

  13. Tonni I, Riccardi G, Piancino MG, Stretti C, Costantinides F, Paganelli C (2020) The influence of food hardness on the physiological parameters of mastication: a systematic review. Arch Oral Biol. 120:104903. https://doi.org/10.1016/J.ARCHORALBIO.2020.104903

    Article  PubMed  Google Scholar 

  14. Beecher RM, Corruccini RS (1981) Effects of dietary consistency on craniofacial and occlusal development in the rat. Angle Orthod 51(1):61–9. https://doi.org/10.1043/0003-3219(1981)051%3c0061:EODCOC%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  15. Evensen JP, Ogaard B (2007) Are malocclusions more prevalent and severe now? A comparative study of medieval skulls from Norway. Am J Orthod Dentofac Orthop 131(6):710–6. https://doi.org/10.1016/j.ajodo.2005.08.037

    Article  Google Scholar 

  16. Takahashi M, Koide K, Arakawa I, Mizuhashi F (2013) Association between perioral muscle pressure and masticatory performance. J Oral Rehabil 40(12):909–15. https://doi.org/10.1111/JOOR.12105

    Article  PubMed  Google Scholar 

  17. Adams V, Mathisen B, Baines S, Lazarus C, Callister R (2013) A systematic review and meta-analysis of measurements of tongue and hand strength and endurance using the Iowa Oral Performance Instrument (IOPI). Dysphagia 28(3):350–69. https://doi.org/10.1007/s00455-013-9451-3

    Article  PubMed  Google Scholar 

  18. Franciotti R, Di Maria E, D’Attilio M, Aprile G, Cosentino FG, Perrotti V (2022) Quantitative measurement of swallowing performance using iowa oral performance instrument: a systematic review and meta-analysis. Biomedicines 10(9):2319. https://doi.org/10.3390/biomedicines10092319

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hashimoto M, Igari K, Hanawa S, Ito A, Takahashi A, Ishida N et al (2014) Tongue pressure during swallowing in adults with down syndrome and its relationship with palatal morphology. Dysphagia 29(4):509–18. https://doi.org/10.1007/s00455-014-9538-5

    Article  PubMed  Google Scholar 

  20. Mano T, Katsuno M, Banno H, Suzuki K, Suga N, Hashizume A et al (2014) Tongue pressure as a novel biomarker of spinal and bulbar muscular atrophy. Neurology 82(3):255–62. https://doi.org/10.1212/WNL.0000000000000041

    Article  PubMed  Google Scholar 

  21. O’Connor-Reina C, Ignacio Garcia JM, Rodriguez Ruiz E, Morillo Dominguez MDC, Ignacio Barrios V, BaptistaJardin P et al (2020) Myofunctional therapy app for severe apnea-hypopnea sleep obstructive syndrome: pilot randomized controlled trial. JMIR Mhealth Uhealth 8(11):e23123. https://doi.org/10.2196/23123

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van Dyck C, Dekeyser A, Vantricht E, Manders E, Goeleven A, Fieuws S et al (2016) The effect of orofacial myofunctional treatment in children with anterior open bite and tongue dysfunction: a pilot study. Eur J Orthod 38(3):227–34. https://doi.org/10.1093/ejo/cjv044

    Article  PubMed  Google Scholar 

  23. Fan Y, Zhang Y, Chen G, He W, Song G, Matthews H et al (2022) Automated assessment of mandibular shape asymmetry in 3-dimensions. Am J Orthod Dentofac Orthop 161(5):698–707. https://doi.org/10.1016/j.ajodo.2021.07.014

    Article  Google Scholar 

  24. Ramirez-Yanez GO, Stewart A, Franken E, Campos K (2011) Prevalence of mandibular asymmetries in growing patients. Eur J Orthod 33(3):236–42. https://doi.org/10.1093/ejo/cjq057

    Article  PubMed  Google Scholar 

  25. Mizuno R, Yamada K, Murakami M, Kaede K, Masuda Y (2014) Relationship between frontal craniofacial morphology and horizontal balance of lip-closing forces during lip pursing. J Oral Rehabil 41(9):659–66. https://doi.org/10.1111/joor.12190

    Article  PubMed  Google Scholar 

  26. Rajbhoj AA, Matthews H, Doucet K, Claes P, Willems G, Begnoni G et al (2022) Age- and sex-related differences in 3D facial shape and muscle pressure in subjects with normal occlusion. Comput Biol Med 151(Pt A):106325. https://doi.org/10.1016/j.compbiomed.2022.106325

    Article  PubMed  Google Scholar 

  27. Claes P, Walters M, Clement J (2012) Improved facial outcome assessment using a 3D anthropometric mask. Int J Oral Maxillofac Surg 41(3):324–30. https://doi.org/10.1016/j.ijom.2011.10.019

    Article  PubMed  Google Scholar 

  28. Fan Y, He W, Chen G, Song G, Matthews H, Claes P et al (2022) Facial asymmetry assessment in skeletal Class III patients with spatially-dense geometric morphometrics. Eur J Orthod 44(2):155–62. https://doi.org/10.1093/ejo/cjab034

    Article  PubMed  Google Scholar 

  29. Lewyllie A, Roosenboom J, Indencleef K, Claes P, Swillen A, Devriendt K et al (2017) A Comprehensive craniofacial study of 22q11.2 deletion syndrome. J Dent Res 96(12):1386–91

    Article  PubMed  Google Scholar 

  30. Ghaferi AA, Schwartz TA, Pawlik TM (2021) STROBE reporting guidelines for observational studies. JAMA Surg 156(6):577–8. https://doi.org/10.1001/JAMASURG.2021.0528

    Article  PubMed  Google Scholar 

  31. Koudelová J, Brůžek J, Cagáňová V, Krajíček V, Velemínská J (2015) Development of facial sexual dimorphism in children aged between 12 and 15 years: a three-dimensional longitudinal study. Orthod Craniofac Res 18(3):175–84. https://doi.org/10.1111/OCR.12096

    Article  PubMed  Google Scholar 

  32. Clark HM, Solomon NP (2012) Age and sex differences in orofacial strength. Dysphagia 27(1):2–9. https://doi.org/10.1007/s00455-011-9328-2

    Article  PubMed  Google Scholar 

  33. van der Bilt A, Abbink JH (2017) The influence of food consistency on chewing rate and muscular work. Arch Oral Biol. https://doi.org/10.1016/j.archoralbio.2017.07.011

    Article  PubMed  Google Scholar 

  34. Tsuboi Y, Yamashiro T, Ando R, Takano-Yamamoto T (2008) Evaluation of catch-up growth from orthodontic treatment and supplemental growth hormone therapy by using Z-scores. Am J Orthod Dentofac Orthop 133(3):450–8. https://doi.org/10.1016/j.ajodo.2006.05.040

    Article  Google Scholar 

  35. Suyama T, Ishikawa H, Tamaoki S, Higa R, Takata S, Sawa Y (2022) Maxillofacial morphological characteristics in growing orthodontic patients with non-syndromic oligodontia. Orthod Craniofac Res 25(3):393–400. https://doi.org/10.1111/ocr.12548

    Article  PubMed  Google Scholar 

  36. Dallaire F, Bigras JL, Prsa M, Dahdah N (2015) Bias related to body mass index in pediatric echocardiographic Z scores. Pediatr Cardiol 36(3):667–76. https://doi.org/10.1007/s00246-014-1063-7

    Article  PubMed  Google Scholar 

  37. Curtis AE, Smith TA, Ziganshin BA, Elefteriades JA (2016) The mystery of the Z-score. Aorta (Stamford) 4(4):124-30. https://doi.org/10.12945/j.aorta.2016.16.014

  38. Chubb H, Simpson JM (2012) The use of Z-scores in paediatric cardiology. Ann Pediatr Cardiol 5(2):179–84. https://doi.org/10.4103/0974-2069.99622

    Article  PubMed  PubMed Central  Google Scholar 

  39. Matthews HS, Palmer RL, Baynam GS, Quarrell OW, Klein OD, Spritz RA et al (2021) Large-scale open-source three-dimensional growth curves for clinical facial assessment and objective description of facial dysmorphism. Sci Rep 11(1):12175. https://doi.org/10.1038/s41598-021-91465-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. White JD, Ortega-Castrillon A, Matthews H, Zaidi AA, Ekrami O, Snyders J et al (2019) MeshMonk: open-source large-scale intensive 3D phenotyping. Sci Rep 9(1):6085. https://doi.org/10.1038/s41598-019-42533-y

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ruan WH, Chen MD, Gu ZY, Lu Y, Su JM, Guo Q (2005) Muscular forces exerted on the normal deciduous dentition. Angle Orthod 75(5):785–90. https://doi.org/10.1043/0003-3219(2005)75[785:MFEOTN]2.0.CO;2

    Article  PubMed  Google Scholar 

  42. Proffit WR, McGlone RE, Barrett MJ (1975) Lip and tongue pressures related to dental arch and oral cavity size in Australian aborigines. J Dent Res 54(6):1161–72. https://doi.org/10.1177/00220345750540061101

    Article  PubMed  Google Scholar 

  43. Proffit WR (1975) Muscle pressures and tooth position: North American whites and Australian aborigines. Angle Orthod 45(1):1–11. https://doi.org/10.1043/0003-3219(1975)045%3c0001:MPATPN%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  44. Begnoni G, Cadenas de Llano-Perula M, Willems G, Pellegrini G, Musto F, Dellavia C (2019) Electromyographic analysis of the oral phase of swallowing in subjects with and without atypical swallowing: a case-control study. J Oral Rehabil 46(10):927–35. https://doi.org/10.1111/joor.12826

    Article  PubMed  Google Scholar 

  45. Dellavia CPB, Begnoni G, Zerosi C, Guenza G, Khomchyna N, Rosati R et al (2022) Neuromuscular stability of dental occlusion in patients treated with aligners and fixed orthodontic appliance: a preliminary electromyographical longitudinal case-control study. Diagnostics (Basel) 12(9):2131. https://doi.org/10.3390/diagnostics12092131

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reis VSD (2017) Correlation between tongue pressure and electrical activity of the suprahyoid muscles. Revista CEFAC [online] 19(6):792–800. https://doi.org/10.1590/1982-021620171968617

    Article  Google Scholar 

  47. Posen AL (1976) The application of quantitative perioral assessment to orthodontic case analysis and treatment planning. Angle Orthod 46(2):118–43. https://doi.org/10.1043/0003-3219(1976)046%3c0118:TAOQPA%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  48. Choi TH, Kim SH, Kim C, Kook YA, Larson BE, Lee NK (2020) Changes in maximum lip-closing force after extraction and nonextraction orthodontic treatments. Korean J Orthod 50(2):120–8. https://doi.org/10.4041/kjod.2020.50.2.120

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee YS, Ryu J, Baek SH, Lim WH, Yang IH, Kim TW et al (2021) Comparative analysis of the differences in dentofacial morphology according to the tongue and lip pressure. Diagnostics (Basel) 11(3):503. https://doi.org/10.3390/diagnostics11030503

    Article  PubMed  Google Scholar 

  50. Partal I, Aksu M (2017) Changes in lips, cheeks and tongue pressures after upper incisor protrusion in Class II division 2 malocclusion: a prospective study. Prog Orthod 18(1):29. https://doi.org/10.1186/s40510-017-0182-0

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jung MH, Yang WS, Nahm DS (2010) Maximum closing force of mentolabial muscles and type of malocclusion. Angle Orthod 80(1):72–9. https://doi.org/10.2319/020509-78.1

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jeong DM, Shin YJ, Lee NR, Lim HK, Choung HW, Pang KM et al (2017) Maximal strength and endurance scores of the tongue, lip, and cheek in healthy, normal Koreans. J Korean Assoc Oral Maxillofac Surg 43(4):221–8. https://doi.org/10.5125/jkaoms.2017.43.4.221

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lindsten R, Ögaard B, Larsson E (2002) Dental arch space and permanent tooth size in the mixed dentition of a skeletal sample from the 14th to the 19th centuries and 3 contemporary samples. Am J Orthod Dentofac Orthop 122(1):48–58. https://doi.org/10.1067/mod.2002.124995

    Article  Google Scholar 

  54. Arakawa I, Igarashi K, Imamura Y, Muller F, Abou-Ayash S, Schimmel M (2021) Variability in tongue pressure among elderly and young healthy cohorts: a systematic review and meta-analysis. J Oral Rehabil 48(4):430–48. https://doi.org/10.1111/joor.13076

    Article  PubMed  Google Scholar 

  55. Takada J, Ono T, Miyamoto JJ, Yokota T, Moriyama K (2011) Association between intraoral pressure and molar position and inclination in subjects with facial asymmetry. Eur J Orthod 33(3):243–9. https://doi.org/10.1093/ejo/cjq060

    Article  PubMed  Google Scholar 

  56. Moin K, Bishara SE (2007) Effects of buccal shields on mandibular dental arch parameters: a clinical and cephalometric study. World J Orthod 8(4):376–84

    PubMed  Google Scholar 

  57. Azevedo ND, Lima JC, Furlan R, Motta AR (2018) Tongue pressure measurement in children with mouth-breathing behaviour. J Oral Rehabil 45(8):612–7. https://doi.org/10.1111/joor.12653

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants for their time and participation in this research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors significantly contribute for the completion of the manuscript. Amit Arvind Rajbhoj contributed to the conceptualization, data collection, methodology, interpretation, analysis, original draft preparation and critical review and editing; Harold Matthews contributed to methodology, interpretation, analysis, critical revision and editing; Kaat Doucet contributed to data collection and manuscript review and editing; Peter Claes contributed to critical review and editing; Giacomo Begnoni contributed to data collection and manuscript review; Guy Willems contributed to supervision, conceptualization and critical revision and editing; Maria Cadenas de Llano-Pérula contributed to supervision, conceptualization, interpretation, critical review and editing of the article.

Corresponding author

Correspondence to Amit Arvind Rajbhoj.

Ethics declarations

Ethics approval

Approval was obtained from the ethical committee of KU Leuven and University Hospitals Leuven, Belgium, on May 26th, 2020, with registration number S63075. The procedures used in this study adhere to the tenets of Declaration of Helsinki.

Informed consent

A written informed consent form was obtained from each participant. For subjects younger than 18 years old, informed consent was obtained from their parents/guardians.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajbhoj, A.A., Matthews, H., Doucet, K. et al. Influence of age and diet consistency on the oral muscle pressure of orthodontically treated and untreated subjects with normal occlusion and comparison of their 3D facial shape. Clin Oral Invest 27, 3649–3661 (2023). https://doi.org/10.1007/s00784-023-04977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-04977-5

Keywords

Navigation