Skip to main content

Advertisement

Log in

Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries.

Materials and methods

Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks. The architecture, viability, and growth kinetics of the biofilm were determined, respectively, by scanning electron microscopy (SEM), confocal laser scanning microscopy, and quantitative (culture colony-forming units, CFUs). The mineral loss, calcium-to-phosphorus ratio, surface morphology, and crystal characteristics of the enamel surface were determined, respectively, using micro-computed tomography, energy dispersive spectroscopy, SEM, and X-ray diffraction (XRD).

Results

SEM showed confluent growth of S. mutans in the control group but not in the GA-KR12-treated group. The dead-to-live ratios of the control and GA-KR12-treated groups were 0.42 ± 0.05 and 0.81 ± 0.08, respectively (p < 0.001). The log CFUs of the control and GA-KR12-treated groups were 8.15 ± 0.32 and 6.70 ± 0.49, respectively (p < 0.001). The mineral losses of the control and GA-KR12-treated groups were 1.39 ± 0.09 gcm−3 and 1.19 ± 0.05 gcm−3, respectively (p < 0.001). The calcium-to-phosphorus molar ratios of the control and GA-KR12-treated groups were 1.47 ± 0.03 and 1.57 ± 0.02, respectively (p < 0.001). A uniformly remineralised prismatic pattern on enamel blocks was observed in the GA-KR12-treated but not in the control group. The hydroxyapatite in the GA-KR12-treated group was better crystallised than that in the control group.

Conclusion

The dual-action peptide GA-KR12 inhibited the growth of S. mutans biofilm and promoted the remineralisation of enamel caries.

Clinical relevance

GA-KR12 potentially is applicable for managing enamel caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen KJ, Gao SS, Duangthip D, Lo ECM, Chu CH (2019) Prevalence of early childhood caries among 5-year-old children: a systematic review. J Investig Clin Dent 10:e12376. https://doi.org/10.1111/jicd.12376

    Article  PubMed  Google Scholar 

  2. Chu CH, Wong SS, Suen RP, Lo EC (2013) Oral health and dental care in Hong Kong. Surgeon 11:153–157. https://doi.org/10.1016/j.surge.2012.12.010

    Article  PubMed  Google Scholar 

  3. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59. https://doi.org/10.1016/S0140-6736(07)60031-2

    Article  PubMed  Google Scholar 

  4. Mei ML, Li QL, Chu CH, Lo EC, Samaranayake LP (2013) Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob 12:4. https://doi.org/10.1186/1476-0711-12-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V (2016) Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 11:4743–4763. https://doi.org/10.2147/IJN.S107624

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mei ML, Lo ECM, Chu CH (2018) Arresting dentine caries with silver diamine fluoride: what’s behind it? J Dent Res 97:751–758. https://doi.org/10.1177/0022034518774783

    Article  PubMed  Google Scholar 

  7. Dai LL, Nudelman F, Chu CH, Lo ECM, Mei ML (2021) The effects of strontium-doped bioactive glass and fluoride on hydroxyapatite crystallization. J Dent 105:103581. https://doi.org/10.1016/j.jdent.2021.103581

    Article  PubMed  Google Scholar 

  8. Niu JY, Yin IX, Mei ML, Wu WKK, Li QL, Chu CH (2021) The multifaceted roles of antimicrobial peptides in oral diseases. Mol Oral Microbiol. https://doi.org/10.1111/omi.12333

    Article  PubMed  Google Scholar 

  9. Zhao IS, Mei ML, Burrow MF, Lo EC, Chu CH (2017) Prevention of secondary caries using silver diamine fluoride treatment and casein phosphopeptide-amorphous calcium phosphate modified glass-ionomer cement. J Dent 57:38–44. https://doi.org/10.1016/j.jdent.2016.12.001

    Article  PubMed  Google Scholar 

  10. Andersson DI, Hughes D, Kubicek-Sutherland JZ (2016) Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 26:43–57. https://doi.org/10.1016/j.drup.2016.04.002

    Article  PubMed  Google Scholar 

  11. Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH (2021) Antimicrobial peptides for the prevention and treatment of dental caries: a concise review. Arch Oral Biol 122:105022. https://doi.org/10.1016/j.archoralbio.2020.105022

    Article  PubMed  Google Scholar 

  12. Wang X, Wang Y, Wang K, Ren Q, Li H, Zheng S, Niu Y, Zhou X, Li W, Zhang L (2019) Bifunctional anticaries peptides with antibacterial and remineralizing effects. Oral Dis 25:488–496. https://doi.org/10.1111/odi.12990

    Article  PubMed  Google Scholar 

  13. Basiri T, Johnson ND, Moffa EB, Mulyar Y, Serra Nunes PL, Machado M, Siqueira WL (2017) Duplicated or hybridized peptide functional domains promote oral homeostasis. J Dent Res 96:1162–1167. https://doi.org/10.1177/0022034517708552

    Article  PubMed  Google Scholar 

  14. Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH (2021) A novel dual-action antimicrobial peptide for caries management. J Dent 111:103729. https://doi.org/10.1016/j.jdent.2021.103729

    Article  PubMed  Google Scholar 

  15. Prajatelistia E, Ju SW, Sanandiya ND, Jun SH, Ahn JS, Hwang DS (2016) Tunicate-inspired gallic acid/metal ion complex for instant and efficient treatment of dentin hypersensitivity. Adv Healthc Mater 5:919–927. https://doi.org/10.1002/adhm.201500878

    Article  PubMed  Google Scholar 

  16. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643. https://doi.org/10.1074/jbc.M805533200

    Article  PubMed  Google Scholar 

  17. Caiaffa KS, Massunari L, Danelon M, Abuna GF, Bedran TBL, Santos-Filho NA, Spolidorio DMP, Vizoto NL, Cilli EM, Duque C (2017) KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Biofouling 33:807–818. https://doi.org/10.1080/08927014.2017.1370087

    Article  PubMed  Google Scholar 

  18. Yin IX, Yu OY, Zhao IS, Mei ML, Li QL, Tang J, Lo ECM, Chu CH (2020) Inhibition of dentine caries using fluoride solution with silver nanoparticles: an in vitro study. J Dent 103:103512. https://doi.org/10.1016/j.jdent.2020.103512

    Article  PubMed  Google Scholar 

  19. Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo EC, Chu CH (2014) A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig 18:873–881. https://doi.org/10.1007/s00784-013-1035-y

    Article  PubMed  Google Scholar 

  20. Zhao IS, Xue VW, Yin IX, Niu JY, Lo ECM and Chu CH (2021) Use of a novel 9.3-mum carbon dioxide laser and silver diamine fluoride: prevention of enamel demineralisation and inhibition of cariogenic bacteria. Dent Mater. https://doi.org/10.1016/j.dental.2021.02.017

  21. Yu OY, Mei ML, Zhao IS, Lo EC, Chu CH (2017) Effects of fluoride on two chemical models of enamel demineralization. Materials (Basel) 10. https://doi.org/10.3390/ma10111245

  22. Yin IX, Yu OY, Zhao IS, Mei ML, Li QL, Tang J, Chu CH (2019) Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol 102:106–112. https://doi.org/10.1016/j.archoralbio.2019.03.022

    Article  PubMed  Google Scholar 

  23. Yu OY, Mei ML, Zhao IS, Li QL, Lo EC, Chu CH (2018) Remineralisation of enamel with silver diamine fluoride and sodium fluoride. Dent Mater 34:e344–e352. https://doi.org/10.1016/j.dental.2018.10.007

    Article  PubMed  Google Scholar 

  24. Li QL, Ning TY, Cao Y, Zhang WB, Mei ML, Chu CH (2014) A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol 14:32. https://doi.org/10.1186/1472-6750-14-32

    Article  PubMed  PubMed Central  Google Scholar 

  25. Niu JYYI, Wu WKK, Li QL, Mei ML, Chu CH (2021) Data from: a concise review on antimicrobial peptides for prevention and treatment of dental caries. Dryad Dataset. https://doi.org/10.5061/dryad.bvq83bk88

    Article  Google Scholar 

  26. Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH (2021) Remineralising dentine caries using an artificial antimicrobial peptide: an in vitro study. J Dent 111:103736. https://doi.org/10.1016/j.jdent.2021.103736

    Article  PubMed  Google Scholar 

  27. Krzysciak W, Jurczak A, Koscielniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515. https://doi.org/10.1007/s10096-013-1993-7

    Article  PubMed  Google Scholar 

  28. Yu OY, Zhao IS, Mei ML, Lo EC, Chu CH (2017) Dental biofilm and laboratory microbial culture models for cariology research. Dent J (Basel) 5. https://doi.org/10.3390/dj5020021

  29. van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619. https://doi.org/10.1515/BC.2001.072

    Article  Google Scholar 

  30. Yin J, Mei ML, Li Q, Xia R, Zhang Z, Chu CH (2016) Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique. Sci Rep 6:25924. https://doi.org/10.1038/srep25924

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wierichs RJ, Carvalho TS, Wolf TG (2021) Efficacy of a self-assembling peptide to remineralize initial caries lesions - a systematic review and meta-analysis. J Dent 109:103652. https://doi.org/10.1016/j.jdent.2021.103652

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a Health and Medical Research Fund (No. 17160402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to May Lei Mei or Chun Hung Chu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J.Y., Yin, I.X., Wu, W.K.K. et al. Efficacy of the dual-action GA-KR12 peptide for remineralising initial enamel caries: an in vitro study. Clin Oral Invest 26, 2441–2451 (2022). https://doi.org/10.1007/s00784-021-04210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04210-1

Keywords

Navigation