Skip to main content

Advertisement

Log in

The effectiveness of hydroxyapatite-beta tricalcium phosphate incorporated into stem cells from human exfoliated deciduous teeth for reconstruction of rat calvarial bone defects

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of stem cells from the pulp of human exfoliated deciduous teeth (SHED) on biphasic calcium phosphate granules (BCP) to repair rat calvarial defects as compared to autogenous bone grafting.

Materials and methods

A defect with a 6-mm diameter was produced on the calvaria of 50 rats. BCP granules were incorporated into SHED cultures grown for 7 days in conventional (CM) or osteogenic (OM) culture media. The animals were allocated into 5 groups of 10, namely: clot, autogenous bone, BCP, BCP+SHED in CM (BCP-CM), and BCP+SHED in OM (BCP-OM). The presence of newly formed bone and residual biomaterial particles was assessed by histometric analysis after 4 and 8 weeks.

Results

The autogenous group showed the largest newly formed bone area at week 8 and in the entire experimental period, with a significant difference in relation to the other groups (P < 0.05). At week 8, BCP-CM and BCP-OM groups showed homogeneous new bone formation (P = 0.13). When considering the entire experimental period, the BCP group had the highest percentage of residual particle area, with no significant difference from the BCP-CM group (P = 0.06) and with a significant difference from the BCP-OM group (P = 0.01). BCP-CM and BCP-OM groups were homogeneous throughout the experimental period (P = 0.59).

Conclusions

BCP incorporated into SHED cultures showed promising outcomes, albeit less pronounced than autogenous grafting, for the repair of rat calvarial defects.

Clinical relevance

BCP incorporated into SHED cultures showed to be an alternative in view of the disadvantages to obtain autogenous bone graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Graph 1
Graph 2
Graph 3
Graph 4

Similar content being viewed by others

References

  1. Chen ST, Darby I (2020) Alveolar ridge preservation and early implant placement at maxillary central incisor sites: a prospective case series study. Clin Oral Impl Res 31(9):803–813. https://doi.org/10.1111/clr.13619

    Article  Google Scholar 

  2. Salvi GE, Monje A, Tomasi C (2018) Long-term biological complications of dental implants placed either in pristine or in augmented sites: a systematic review and meta-analysis. Clin Oral Impl Res 29(Suppl. 16):294–310. https://doi.org/10.1111/clr.13123

    Article  Google Scholar 

  3. Tran D, Gay IC, Diaz-Rodriguez A, Parthasarathy K, Weltman R, Friedman L (2016) Survival of dental implants placed in grafted and nongrafted bone: a retrospective study in a university setting. Int J Oral Maxillofac Implants 31(2):310–317. https://doi.org/10.11607/jomi.4681

    Article  PubMed  Google Scholar 

  4. Schropp L, Wenzel A, Kostopoulos L, Karring T (2003) Bone healing soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restor Dent 23(4):313–323

    Google Scholar 

  5. Jafari M, Paknejad Z, Rad MR, Saeed Reza Motamedian SR, Mohammad Jafar Eghbal ME, Nasser Nadjmi N, Khojasteh A (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105(2):431–459. https://doi.org/10.1002/jbm.b.33547

    Article  PubMed  Google Scholar 

  6. Khojasteh A, Motamedian SR (2016) Mesenchymal stem cell therapy for treatment of craniofacial bone defects: 10 years of experience. Regen Reconstr Restor 1(1):1–7. https://doi.org/10.22037/rrr.v1i1.9777

    Article  Google Scholar 

  7. Mendes LC, Sauvigne T, Guiol J (2016) Morbidity of autologous bone harvesting in implantology: literature review from 1990 to 2015. Rev de Stomatol Chir Maxillofac Chir Orale 117(6):388–402. https://doi.org/10.1016/j.revsto.2016.09.003

    Article  Google Scholar 

  8. Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N (2015) Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells 7(10):1215–122. https://doi.org/10.4252/wjsc.v7.i10.1215

    Article  PubMed  PubMed Central  Google Scholar 

  9. Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7(3):657–668. https://doi.org/10.4252/wjsc.v7.i3.657

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ceccarelli G, Presta R, Benedetti L, De Angelis MGC, Lupi SM (2017) Rodriguez y Baena R (2017) Emerging perspectives in scaffold for tissue engineering in oral surgery. Stem Cells Int 10:1–11. https://doi.org/10.1155/2017/4585401

    Article  Google Scholar 

  11. Huang GTJ, Theslef FI (2013) Stem Cells in Craniofacial Development and Regeneration. Wiley Blackwell, Somerset. https://doi.org/10.1002/9781118498026

    Book  Google Scholar 

  12. Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S (2008) SHED repair critical-size calvarial defects in mice. Oral Dis 14(5):428–434. https://doi.org/10.1111/j.1601-0825.2007.01396.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL (2018) Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater Today 21(4):363–376. https://doi.org/10.1016/j.mattod.2017.10.005

    Article  Google Scholar 

  14. Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N (2017) Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med 28(5):77. https://doi.org/10.1007/s10856-017-5883-x

    Article  PubMed  Google Scholar 

  15. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765. https://doi.org/10.1002/mabi.200400026

    Article  PubMed  Google Scholar 

  16. Tanaka T, Komaki H, Chazono M, Kitasato S, Kakuta A, Akiyama S, Marumo K (2017) Basic research and clinical application of beta-tricalcium phosphate (beta-TCP). Morphologie 101(334):164–172. https://doi.org/10.1016/j.morpho.2017.03.002

    Article  PubMed  Google Scholar 

  17. Hernigou P, Dubory A, Pariat J, Potage D, Roubineau F, Jammal S, Flouzat Lachaniette CH (2017) Beta-tricalcium phosphate for orthopedic reconstructions as an alternative to autogenous bone graft. Morphologie 101(334):173–179. https://doi.org/10.1016/j.morpho.2017.03.005

    Article  PubMed  Google Scholar 

  18. Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten FP (2011) The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32(19):4393–4405. https://doi.org/10.1016/j.biomaterials.2011.02.047

    Article  PubMed  Google Scholar 

  19. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4):1401–1421. https://doi.org/10.1016/j.actbio.2011.11.017

    Article  PubMed  Google Scholar 

  20. Lobo SE, Glickman R, da Silva WN, Arinzeh TL, Irina Kerkis I (2015) Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Cell Tissue Res 361(2):477–495. https://doi.org/10.1007/s00441-015-2116-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lomelino RO, Castro-Silva II, Linhares ABR, Alves GG, Santos SRA, Gameiro VS, Rossi AM, Granjeiro JM (2012) The association of human primary bone cells with biphasic calcium phosphate (betaTCP/HA 70:30) granules increases bone repair. J Mater Sci Mater Med 23(3):781–788. https://doi.org/10.1007/s10856-011-4530-1

    Article  Google Scholar 

  22. Luby AO, Ranganathan K, Lynn JV, Nelson NS, Donneys A, Buchman SR (2019) Stem cells for bone regeneration: current state and future directions. J Craniofac Surg 30(3):730–735. https://doi.org/10.1097/scs.0000000000005250

    Article  PubMed  Google Scholar 

  23. Liu J, Zhou P, Long Y, Huang C, Chen D (2018) Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Stem Cell Res Ther 9(1):79. https://doi.org/10.1186/s13287-018-0817-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591. https://doi.org/10.2174/156652412800619950

    Article  PubMed  Google Scholar 

  25. Nakajima K, Kunimatsu R, Ando K, Ando T, Hayashi Y, Kihara T, Hiraki T, Tsuka Y, Abe T, Kaku M, Nikawa H, Takata T, Tanne K, Tanimoto K (2018) Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 497(3):876–882. https://doi.org/10.1016/j.bbrc.2018.02.156

    Article  PubMed  Google Scholar 

  26. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MAAM, Shi S, Santos CF, Nör JE (2010) SHED Differentiate into functional odontoblasts and endothelium. J Dental Res 89(8):791–796. https://doi.org/10.1177/0022034510368647

    Article  Google Scholar 

  27. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812. https://doi.org/10.1073/pnas.0937635100

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi X, Mao J, Liu Y (2020) Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med 9(4):445–464. https://doi.org/10.1002/sctm.19-0398

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chih-Sheng K, Jen-Hao C, Wen-Ta S (2020) Stem cells from human exfoliated deciduous teeth: a concise review. Curr Stem Cell Res Ther 15(1):61–76. https://doi.org/10.2174/1574888X14666191018122109

    Article  Google Scholar 

  30. Ferreira JRM, Greck AP (2020) Adult mesenchymal stem cells and their possibilities for Dentistry: what to expect? Dental Press J Orthod 25(3):85–92. https://doi.org/10.1590/2177-6709.25.3.085-092.sar

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee JM, Kim HY, Park JS, Lee DJ, Zhang S, Green DW, Okano T, Hong JH, Jung H (2019) Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 13(2):319–327. https://doi.org/10.1002/term.2811

    Article  PubMed  Google Scholar 

  32. Yang X, Zhao Q, Chen Y, Fu Y, Lu S, Yu X, Yu D, Zhao W (2019) Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cell Nanomed Biotechnol 47(1):822–832. https://doi.org/10.1080/21691401.2019.1576706

    Article  Google Scholar 

  33. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen O, Rawle F, Peynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Wurbel H (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  PubMed  PubMed Central  Google Scholar 

  34. Messora MR, Nagata MJH, Dornelles RCM, Bomfim SRM, Furlaneto FAC, de Melo LGN, Deliberador TM, Bosco AF, Garcia VG, Fucini SE (2008) Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria. J Periodontol Res 43(6):723–729. https://doi.org/10.1111/j.1600-0765.2008.01084.x

    Article  Google Scholar 

  35. Melo LGN, Nagata MJH, Bosco AF, Ribeiro LLG, Leite CM (2005) Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibias. Clin Oral Implant Res 16(6):683–691. https://doi.org/10.1111/j.1600-0501.2005.01090.x

    Article  Google Scholar 

  36. do Lago ES, Ferreira S, Garcia IR Jr, Okamoto R, Mariano RC (2020) Improvement of bone repair with l-PRF and bovine bone in calvaria of rats: histometric and immunohistochemical study. Clin Oral Invest 24(5):1637–1650. https://doi.org/10.1007/s00784-019-03018-4

    Article  Google Scholar 

  37. Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J (2011) Testing the critical-size in calvarial bone defects: revisiting the concept of a critical-size defect (CSD). Plastic and Reconst Surg 125(6):1685–1692. https://doi.org/10.1097/prs.0b013e3181cb63a3

    Article  Google Scholar 

  38. Cardoso GBC, Chacon EL, Maia LRB, Zavaglia CAC, da Cunha MR (2019) The importance of understandingdifferences in a critical size model: a preliminary in vivo study using tibia and parietal bone to evaluate the reaction with different biomaterials. Mater Res 22(1):e20180491. https://doi.org/10.1590/1980-5373-MR-2018-0491

    Article  Google Scholar 

  39. Lee CC, Hirasawa N, Garcia KG, Ramanathan D, Kim KD (2019) Stem and progenitor cell microenvironment for bone regeneration and repair. Regen Med 14(7):693–702. https://doi.org/10.2217/rme-2018-0044

    Article  PubMed  Google Scholar 

  40. Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3(2):815–826. https://doi.org/10.3390/ma3020815

    Article  PubMed Central  Google Scholar 

  41. Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, Rouard H, Chevallier N (2017) Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater 59(2017):94–107. https://doi.org/10.1016/j.actbio.2017.06.018

    Article  PubMed  Google Scholar 

  42. Pereira RC, Benelli R, Canciani B, Scaranari M, Daculsi G, Cancedda R, Gentili C (2019) Beta-tricalcium phosphate ceramic triggers fast and robust bone formation by human mesenchymal stem cells. J Tissue Eng Regen Med 13(6):1007–1018. https://doi.org/10.1002/term.2848

    Article  PubMed  Google Scholar 

  43. Chu W, Gan Y, Zhuang Y, Wang X, Zhao J, Tang T, Dai K (2018) Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(−biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther 9(1):157. https://doi.org/10.1186/s13287-018-0906-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S, Le AD, Wang SL (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 88(3):249–254. https://doi.org/10.1177/0022034509333804

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gielkens PFM, Schortinghuis J, de Jong JR, Huysmans MCDNJM, van Leeuwen MBM, Raghoebar GM, Bos RRM, Stegenga B (2008) A comparison of micro-CT, microradiography and histomorphometry in bone research. Arch Oral Biol. 53(6):558–566. https://doi.org/10.1016/j.archoralbio.2007.11.011

    Article  PubMed  Google Scholar 

  46. Shin-Young P, Kyoung-Hwa K, Ki-Tae K, Kang-Woon L, Yong-Moo L, Chong-Pyoung C, Yang-Jo S (2011) The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects. J Periodontal Implant Sci. 41:218–226. https://doi.org/10.5051/jpis.2011.41.5.218

    Article  Google Scholar 

  47. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and μCT. J Bone Miner Res. 20(7):1177–1184. https://doi.org/10.1359/JBMR.050205

    Article  PubMed  Google Scholar 

  48. Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Carriel V, Scionti G, Alaminos M (2014) Cell viability and proliferation capability of long-term human dentalpulp stem cell cultures. Cytotherapy. 16:266–277. https://doi.org/10.1016/j.jcyt.2013.10.016

    Article  PubMed  Google Scholar 

  49. Marques NP, Lopes CS, Marques NCT, Cosme-Silva L, Oliveira TM, Duque C, Sakai VT, Hanemann JAC (2019) A preliminary comparison between the effects of red and infrared laser irradiation on viability and proliferation of SHED. Lasers Med Sci. 34(3):465–471. https://doi.org/10.1007/s10103-018-2615-5

    Article  PubMed  Google Scholar 

  50. Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B, Schmitt A, Vital S, Poliard A, Hélary C, Rochefort GY, Chaussain C, Gorin C (2019) Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cell Transl Med 8(8):844–857. https://doi.org/10.1002/sctm.18-0182

    Article  Google Scholar 

  51. Qiao X, Russell SJ, Yang X, Tronci G, Wood DJ (2015) Compositional and in vitro evaluation of nonwoven type I collagen/polydl-lactic acid scaffolds for bone regeneration. J Funct Biomater 6(3):667–686. https://doi.org/10.3390/jfb6030667

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Coordination for the Improvement of Higher Education Personnel) - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Augusto Ferreira da Silva.

Ethics declarations

Ethics approval and consent to participate

This article contains studies with animals performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study was approved by the Committee on Ethics in the Use of Animals (CEUA-Unifal-MG) under the number 32/2019. For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.A.F., Rinco, U.G.R., Jacob, R.G.M. et al. The effectiveness of hydroxyapatite-beta tricalcium phosphate incorporated into stem cells from human exfoliated deciduous teeth for reconstruction of rat calvarial bone defects. Clin Oral Invest 26, 595–608 (2022). https://doi.org/10.1007/s00784-021-04038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04038-9

Keywords

Navigation