Skip to main content

Advertisement

Log in

Radiotherapy changes the salivary proteome in head and neck cancer patients: evaluation before, during, and after treatment

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Salivary glands are affected during radiotherapy in the head and neck region, leading to a reduction in salivary flow and changes its composition. Besides negatively affecting the oral soft tissues, this can also lead to dental impairment. Thus, we evaluated the effect of radiotherapy in the proteomic profile of the saliva in patients with head and neck cancer (HNC).

Materials and methods

HNC patients had their saliva collected before (BRT), during (2–5 weeks; DRT), and after (3–4 months; ART) radiotherapy. Saliva was also collected from healthy volunteers (control; C). Samples were processed for proteomic analysis.

Results

In total, 1055 proteins were identified, among which 46 were common to all groups, while 86, 86, 286, and 395 were exclusively found in C, BRT, DRT, and ART, respectively. Remarkably, alpha-enolase was increased 35-fold DRT compared with BRT, while proline-rich proteins were decreased. ART there was a 16-fold increase in scaffold attachment factor-B1 and a 3-fold decrease in alpha-enolase and several cystatins. When compared with C, salivary proteins of BRT patients showed increases cystatin-C, lysozyme C, histatin-1, and proline-rich proteins

Conclusion/clinical revelance

Both HNC and radiotherapy remarkably change the salivary protein composition. Altogether, our results, for the first time, suggest investigating alpha-enolase levels in saliva DRT in future studies as a possible biomarker and strategy to predict the efficiency of the treatment. Moreover, our data provide important insights for designing dental products that are more effective for these patients and contribute to a better understanding of the progressive changes in salivary proteins induced by radiotherapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Safdari Y, Khalili M, Farajnia S, Asgharzadeh M, Yazdani Y, Sadeghi M (2014) Recent advances in head and neck squamous cell carcinoma--a review. Clin Biochem 47(13-14):1195–1202. https://doi.org/10.1016/j.clinbiochem.2014.05.066

    Article  PubMed  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22. https://doi.org/10.1038/nrc2982

    Article  PubMed  Google Scholar 

  3. Cruz FO, Ferreira EB, Vasques CI, Mata LR, Reis PE (2016) Validation of an educative manual for patients with head and neck cancer submitted to radiation therapy. Rev Lat Am Enfermagem:24. https://doi.org/10.1590/1518-8345.0949.2706

  4. Soulieres D, Faivre S, Mesia R, Remenar E, Li SH, Karpenko A, Dechaphunkul A, Ochsenreither S, Kiss LA, Lin JC, Nagarkar R, Tamas L, Kim SB, Erfan J, Alyasova A, Kasper S, Barone C, Turri S, Chakravartty A, Chol M, Aimone P, Hirawat S, Licitra L (2017) Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol 18:323–335. https://doi.org/10.1016/S1470-2045(17)30064-5

    Article  PubMed  Google Scholar 

  5. Zago SD (2006) The radiotherapy effect on the quality of life of patients with head and neck cancer. Revista Brasileira de Cancerologia 52(4):323–329

    Article  Google Scholar 

  6. Mira JG, Fullerton GD, Wescott WB (1982) Correlation between initial salivary flow rate and radiation dose in the production of xerostomia. Acta Radiol Oncol 21(3):151–154

    Article  Google Scholar 

  7. Makkonen T (1988) Studies on oral complications of head and neck cancer radiotherapy. Proc Finn Dent Soc 84(Suppl 4-5):1–111

    PubMed  Google Scholar 

  8. Chencharick JD, Mossman KL (1983) Nutritional consequences of the radiotherapy of head and neck cancer. Cancer. 51(5):811–815. https://doi.org/10.1002/1097-0142(19830301)51:5<811::aid-cncr2820510511>3.0.co;2-m

    Article  PubMed  Google Scholar 

  9. Specht L (2002) Oral complications in the head and neck radiation patient. Introduction and scope of the problem. Support Care Cancer 10(1):36–39

    Article  Google Scholar 

  10. Murad AM KA (1996) Oncologia: bases clínicas do tratamento. Rio de Janeiro: Guanabara Koogan;. 1.ed

  11. Jham BC, da Silva Freire AR (2006) Oral complications of radiotherapy in the head and neck. Braz J Otorhinolaryngol 72(5):704–708. https://doi.org/10.1016/s1808-8694(15)31029-6

    Article  PubMed  Google Scholar 

  12. Shyh-An Yeh MD (2010) Radiotherapy for head and neck cancer. Semin Plast Surg 24(2):127–136

    Article  Google Scholar 

  13. Ventura T, Cassiano LPS, Souza ESCM, Taira EA, Leite AL, Rios D, Buzalaf MAR (2017) The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol 79:20–29. https://doi.org/10.1016/j.archoralbio.2017.03.001

    Article  PubMed  Google Scholar 

  14. Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riano-Pachon DM, Rivera C, Brandao TB, Gouvea AF, Santos-Silva AR, Coletta RD, Paes Leme AF (2015) Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep 5:16305. https://doi.org/10.1038/srep16305

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ventura T, Ribeiro NR, Dionizio AS, Sabino IT, Buzalaf MAR (2018) Standardization of a protocol for shotgun proteomic analysis of saliva. J Appl Oral Sci 26:e20170561. https://doi.org/10.1590/1678-7757-2017-0561

    Article  PubMed  PubMed Central  Google Scholar 

  16. Delmonico L, Bravo M, Silvestre RT, Ornellas MH, De Azevedo CM, Alves G (2016) Proteomic profile of saliva and plasma from women with impalpable breast lesions. Oncol Lett 12(3):2145–2152. https://doi.org/10.3892/ol.2016.4828

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jasim H, Olausson P, Hedenberg-Magnusson B, Ernberg M, Ghafouri B (2016) The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci Rep 6:39073. https://doi.org/10.1038/srep39073

    Article  PubMed  PubMed Central  Google Scholar 

  18. Penteado CAS, Batista TBD, Chaiben CL, Bonacin BG, Ventura TMO, Dionizio A, Couto Souza PH, Buzalaf MAR, Azevedo-Alanis LR (2020) Salivary protein candidates for biomarkers of oral disorders in alcohol and tobacco dependents. Oral Dis 26:1200–1208. https://doi.org/10.1111/odi.13337

    Article  Google Scholar 

  19. Dawes C (1972) Circadian rhythms in human salivary flow rate and composition. J Physiol 220(3):529–545

    Article  Google Scholar 

  20. Taira EA, Ventura TMS, Cassiano LPS, Silva CMS, Martini T, Leite AL, Rios D, Magalhaes AC, Buzalaf MAR (2018) Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure. Caries Res 52(5):367–377. https://doi.org/10.1159/000486969

    Article  PubMed  Google Scholar 

  21. Van De Wiele C, Signore A, Scopinaro F, Waterhouse R, Dierckx RA, Imitt (2001) Imaging tumour hypoxia: where are we? Nucl Med Commun 22(9):945–947

    Article  Google Scholar 

  22. Buzalaf MA, Hannas AR, Kato MT (2012) Saliva and dental erosion. J Appl Oral Sci 20(5):493–502. https://doi.org/10.1590/s1678-77572012000500001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shannon IL, Starcke EN, Wescott WB (1977) Effect of radiotherapy on whole saliva flow. J Dent Res 56(6):693–693. https://doi.org/10.1177/00220345770560062201

    Article  PubMed  Google Scholar 

  24. Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer. 107(11):2525–2534. https://doi.org/10.1002/cncr.22302

    Article  PubMed  Google Scholar 

  25. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78(4):983–991. https://doi.org/10.1016/j.ijrobp.2010.06.052

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cowman RA, Baron SS, Glassman AH, Davis ME, Strosberg AM (1983) Changes in protein-composition of saliva from radiation-induced xerostomia patients and its effect on growth of oral Streptococci. Journal of Dental Research 62(3):336–340. https://doi.org/10.1177/00220345830620030601

    Article  Google Scholar 

  27. Funegard U, Franzen L, Ericson T, Henriksson R (1994) Parotid-saliva composition during and after irradiation of head and neck-cancer. Oral Oncol 30b(4):230–233. https://doi.org/10.1016/0964-1955(94)90002-7

    Article  Google Scholar 

  28. Makkonen TA, Tenovuo J, Vilja P, Heimdahl A (1986) Changes in the protein-composition of whole saliva during radiotherapy in patients with oral or pharyngeal cancer. Oral Surg Oral Med O 62(3):270–275. https://doi.org/10.1016/0030-4220(86)90007-1

    Article  Google Scholar 

  29. Anderson MW, Izutsu KT, Rice JC (1981) Parotid-gland patho-physiology after mixed gamma and neutron-irradiation of cancer-patients. Oral Surg Oral Med O 52(5):495–500. https://doi.org/10.1016/0030-4220(81)90361-3

    Article  Google Scholar 

  30. Vissink A, Jansma J, Spijkervet FKL, Burlage FR, Coppes RP (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol M 14(3):199–212. https://doi.org/10.1177/154411130301400305

    Article  Google Scholar 

  31. Gallo C, Ciavarella D, Santarelli A, Ranieri E, Colella G, Lo Muzio L, Lo Russo L (2016) Potential salivary proteomic markers of oral squamous cell carcinoma. Cancer Genomics Proteomics 13(1):55–61

    PubMed  Google Scholar 

  32. Yang J, Lee SJ, Kwon Y, Ma L, Kim J (2020) Tumor suppressive function of Matrin 3 in the basal-like breast cancer. Biol Res 53(1):42. https://doi.org/10.1186/s40659-020-00310-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hannig M, Dounis E, Henning T, Apitz N, Stosser L (2006) Does irradiation affect the protein composition of saliva? Clin Oral Investig 10(1):61–65. https://doi.org/10.1007/s00784-005-0026-z

    Article  PubMed  Google Scholar 

  34. Stenudd C, Nordlund A, Ryberg M, Johansson I, Kallestal C, Stromberg N (2001) The association of bacterial adhesion with dental caries. J Dent Res 80(11):2005–2010. https://doi.org/10.1177/00220345010800111101

    Article  PubMed  Google Scholar 

  35. Richards TM, Hurley T, Grove L, Harrington KJ, Carpenter GH, Proctor GB, Nutting CM (2017) The effect of parotid gland-sparing intensity-modulated radiotherapy on salivary composition, flow rate and xerostomia measures. Oral Dis 23(7):990–1000. https://doi.org/10.1111/odi.12686

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nishimura Y, Homma-Takeda S, Kim HS, Kakuta I (2014) Radioprotection of mice by lactoferrin against irradiation with sublethal X-rays. J Radiat Res 55(2):277–282. https://doi.org/10.1093/jrr/rrt117

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sakai M, Matsushita T, Hoshino R, Ono H, Ikai K, Sakai T (2017) Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci Rep 7(1):9753. https://doi.org/10.1038/s41598-017-10351-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bobek LA, Levine MJ (1992) Cystatins - inhibitors of cysteine proteinases. Crit Rev Oral Biol M 3(4):307–332. https://doi.org/10.1177/10454411920030040101

    Article  Google Scholar 

  39. Petushkova AI, Savvateeva LV, Korolev DO, Zamyatnin AA (2019) Cysteine cathepsins: potential applications in diagnostics and therapy of malignant tumors. Biochemistry-Moscow+. 84(7):746–761. https://doi.org/10.1134/S000629791907006x

    Article  PubMed  Google Scholar 

  40. Xiao PP, Hu YH, Sun L (2010) Scophthalmus maximus cystatin B enhances head kidney macrophage-mediated bacterial killing. Dev Comp Immunol 34(12):1237–1241. https://doi.org/10.1016/j.dci.2010.07.008

    Article  PubMed  Google Scholar 

  41. Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, Xiao Y, Buzalaf MA (2015) Identification of acid-resistant proteins in acquired enamel pellicle. J Dent 43(12):1470–1475. https://doi.org/10.1016/j.jdent.2015.10.009

    Article  PubMed  Google Scholar 

  42. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    Article  Google Scholar 

  43. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, Levadoux-Martin M, Lee JB, Giacomelli AO, Hassell JA, Fischer-Russell D, Trus MR, Foley R, Leber B, Xenocostas A, Brown ED, Collins TJ, Bhatia M (2012) Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 149(6):1284–1297. https://doi.org/10.1016/j.cell.2012.03.049

    Article  PubMed  Google Scholar 

  44. Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30(3):142–150. https://doi.org/10.1016/j.tibs.2005.01.005

    Article  PubMed  Google Scholar 

  45. Jung DW, Kim WH, Williams DR (2014) Chemical genetics and its application to moonlighting in glycolytic enzymes. Biochem Soc T 42:1756–1761. https://doi.org/10.1042/Bst20140201

    Article  Google Scholar 

  46. Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF (1991) Role of cell-surface lysines in plasminogen binding to cells - identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry-Us 30(6):1682–1691. https://doi.org/10.1021/bi00220a034

    Article  Google Scholar 

  47. Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, Romer J (2005) Plasminogen activation and cancer. Thromb Haemost 93(4):676–681. https://doi.org/10.1160/Th05-01-0054

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful especialy the trial participants and their families, and the staff of the Clinical Research Center of the FOB/USP. The authors are gratefull to Mrs. Larissa Tercilia Grizzo for technical support with proteomic analysis.

Funding

The authors thank FAPESP for financial support and for the concession of a scholarship to the first (Proc. FAPESP 2017/05031-2) and second (Proc. FAPESP 2018/17860-6) authors. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Afonso Rabelo Buzalaf.

Ethics declarations

Ethical approval

The collection of the samples started after approval by the local Institutional Ethics Committee (No. 61484116.0.0000.5417), Bauru School of Dentistry, University of São Paulo, and signature of informed consent. The study was performed in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, T.M.O., Ribeiro, N.R., Taira, E.A. et al. Radiotherapy changes the salivary proteome in head and neck cancer patients: evaluation before, during, and after treatment. Clin Oral Invest 26, 225–258 (2022). https://doi.org/10.1007/s00784-021-03995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-03995-5

Keywords

Navigation