Skip to main content

Advertisement

Log in

Biocompatibility, mechanical, and bonding properties of a dental adhesive modified with antibacterial monomer and cross-linker

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the antibacterial, cytotoxicity, and mechanical properties of a dental adhesive modified with quaternary ammonium monomer ((2-acryloyloxyethyl)dimethyldodecylammonium bromide) and cross-linker (bis(2-acryloyloxyethyl)methyldodecylammonium bromide).

Materials and methods

Monomer (M), cross-linker (C), or a combination of these (M + C) were incorporated into adhesive Adper Single Bond Plus (SB) in 5, 10, or 25% (as wt%). A colony-forming unit and MTT assays were used to evaluate antibacterial properties against Streptococcus mutans and cell viability. Resin-dentin beams (0.9 ± 0.1 mm2) were evaluated for micro-tensile bond strength (μTBS) after 24 h, 6 months, and 3 years. Hourglass specimens were evaluated for ultimate tensile strength (UTS) after 24 h, 1 week, and 6 months. Micro-hardness measurements after softening in ethanol were taken as an indirect assessment of the polymer cross-linking density. Kruskal-Wallis, one-way ANOVA, two-way ANOVA, and Student’s t test were used for analysis of the antibacterial, cytotoxicity, μTBS, UTS, and hardness data, all with a significance level of p < 0.05.

Results

10%M and 25%M demonstrated a significant reduction in S. mutans relative to SB (p < 0.001). No differences in cytotoxicity were detected for any of the groups. After 6 months, no changes in μTBS were shown for any of the groups. After 3 years, all groups evidenced a significant decrease in μTBS (p < 0.05) except 5%M, 5%C, and 5%M + 5%C. All groups demonstrated either stable or significantly increased UTS after 6 months. Except for the cross-linker groups, a significant decrease in micro-hardness was shown for all groups after softening in ethanol (p < 0.05).

Conclusions

A 5–10% of monomer may render the resin antibacterial without a compromise to its mechanical and bonding properties.

Clinical relevance

Biomodification of a resin adhesive with an antibacterial monomer and cross-linker may help improve the life span of adhesive restorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raible R (2015) ADA statement: new CDC statistics show need for increased access to dental care, with a greater emphasis on preventing disease

  2. Bohaty BS, Ye Q, Misra A, Sene F, Spencer P (2013) Posterior composite restoration update: focus on factors influencing form and function. Clin Cosmet Investig Dent 5:33–42. https://doi.org/10.2147/CCIDE.S42044

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fabianelli A, Pollington S, Davidson CL, Cagidiaco MC, Goracci C (2007) The relevance of micro-leakage studies. Inter Dent SA 9(3):64–74

    Google Scholar 

  4. Kubo S (2011) Longevity of resin composite restorations. Jpn Dent Sci Rev 47(1):43–55. https://doi.org/10.1016/j.jdsr.2010.05.002

    Article  Google Scholar 

  5. Ferracane JL (2017) Models of caries formation around dental composite restorations. J Dent Res 96(4):364–371. https://doi.org/10.1177/0022034516683395

    Article  PubMed  Google Scholar 

  6. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C (2011) Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater 27(5):487–496. https://doi.org/10.1016/j.dental.2011.02.006

    Article  PubMed  Google Scholar 

  7. Imazato S, J-h C, Ma S, Izutani N, Li F (2012) Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev 48(2):115–125. https://doi.org/10.1016/j.jdsr.2012.02.003

    Article  Google Scholar 

  8. Wiegand A, Buchalla W, Attin T (2007) Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23(3):343–362. https://doi.org/10.1016/j.dental.2006.01.022

    Article  PubMed  Google Scholar 

  9. Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, Boccaccini AR, Papagerakis P (2015) Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl 52:267–272. https://doi.org/10.1016/j.msec.2015.03.062

    Article  PubMed  Google Scholar 

  10. Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z (2014) Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 39(2):109–114. https://doi.org/10.5395/rde.2014.39.2.109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 29(5):495–505. https://doi.org/10.1016/j.dental.2013.03.011

    Article  PubMed  Google Scholar 

  12. Antonucci JM, Zeiger DN, Tang K, Lin-Gibson S, Fowler BO, Lin NJ (2012) Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater 28(2):219–228. https://doi.org/10.1016/j.dental.2011.10.004

    Article  PubMed  Google Scholar 

  13. Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A (2018) Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent Mater 34(6):851–867. https://doi.org/10.1016/j.dental.2018.03.014

    Article  PubMed  Google Scholar 

  14. Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH (2013) Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent 41(5):464–474. https://doi.org/10.1016/j.jdent.2013.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheng L, Weir MD, Zhang K, Arola DD, Zhou X, Xu HH (2013) Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent 41(4):345–355. https://doi.org/10.1016/j.jdent.2013.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li F, Weir MD, Chen J, Xu HH (2014) Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater 30(4):433–441. https://doi.org/10.1016/j.dental.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28(5):561–572. https://doi.org/10.1016/j.dental.2012.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  18. He J, Soderling E, Lassila LV, Vallittu PK (2015) Preparation of antibacterial and radio-opaque dental resin with new polymerizable quaternary ammonium monomer. Dent Mater 31(5):575–582. https://doi.org/10.1016/j.dental.2015.02.007

    Article  PubMed  Google Scholar 

  19. Huang L, Xiao YH, Xing XD, Li F, Ma S, Qi LL, Chen JH (2011) Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch Oral Biol 56(4):367–373. https://doi.org/10.1016/j.archoralbio.2010.10.011

    Article  PubMed  Google Scholar 

  20. Makvandi P, Ghaemy M, Mohseni M (2016) Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials. Eur Polym J 74:81–90. https://doi.org/10.1016/j.eurpolymj.2015.11.011

    Article  Google Scholar 

  21. Weng Y, Guo X, Chong V, Howard L, Gregory R, Xie D (2011) Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. J Biomed Sci Eng 4(3):147–157. https://doi.org/10.4236/jbise.2011.43021

    Article  Google Scholar 

  22. Punyani S, Singh H (2006) Preparation of iodine containing quaternary amine methacrylate copolymers and their contact killing antimicrobial properties. J Appl Polym Sci 102(2):1038–1044. https://doi.org/10.1002/app.24181

    Article  Google Scholar 

  23. McKinney JE, Wu W (1985) Chemical softening and wear of dental composites. J Dent Res 64(11):1326–1331. https://doi.org/10.1177/00220345850640111601

    Article  PubMed  Google Scholar 

  24. Li Y, Themistou E, Das BP, Christian-Tabak L, Zou J, Tsianou M, Cheng C (2011) Polyelectrolyte nanocages via crystallized miniemulsion droplets. Chem Commun (Camb) 47(42):11697–11699. https://doi.org/10.1039/c1cc14298d

    Article  Google Scholar 

  25. Sun B, Sun H, Li Y, Cui H, Cheng C (2019) A systematic synthetic study of polyelectrolyte nanocapsules via crystallized miniemulsion nanodroplets. Eng Sci 5:39–45. https://doi.org/10.30919/es8d536

    Article  Google Scholar 

  26. Lee MJ, Kim MJ, Kwon JS, Lee SB, Kim KM (2017) Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials (Basel) 10 (3). https://doi.org/10.3390/ma10030288

  27. Barot T, Rawtani D, Kulkarni P (2020) Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon 6(3):e03601. https://doi.org/10.1016/j.heliyon.2020.e03601

    Article  PubMed  PubMed Central  Google Scholar 

  28. ISO Standard 10993. Biological evaluation of medical devices. International Organization for Standardization Geneva, Switzerland

  29. Lagocka R, Mazurek-Mochol M, Jakubowska K, Bendyk-Szeffer M, Chlubek D, Buczkowska-Radlinska J (2018) Analysis of base monomer elution from 3 flowable bulk-fill composite resins using high performance liquid chromatography (HPLC). Med Sci Monit 24:4679–4690. https://doi.org/10.12659/MSM.907390

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shonol Y, Ogawal T, Terashital M, Carvalho RM, Pashley EL, Pashley DH (1999) Regional measurement of resin-dentin bonding as an array. J Dent Res 78(2):699–705. https://doi.org/10.1177/00220345990780021001

    Article  Google Scholar 

  31. Armstrong S, Breschi L, Ozcan M, Pfefferkorn F, Ferrari M, Van Meerbeek B (2017) Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (muTBS) approach. Dent Mater 33(2):133–143. https://doi.org/10.1016/j.dental.2016.11.015

    Article  PubMed  Google Scholar 

  32. Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22(3):211–222. https://doi.org/10.1016/j.dental.2005.05.005

    Article  PubMed  Google Scholar 

  33. Asmussen E, Peutzfeldt A (2001) Influence of pulse-delay curing on softening of polymer structures. J Dent Res 80(6):1570–1573. https://doi.org/10.1177/00220345010800061801

    Article  PubMed  Google Scholar 

  34. Leitune V, Collares F, Trommer R, Andrioli D, Bergmann C, Samuel S (2013) The addition of nanostructured hydroxyapatite to an experimental adhesive resin. J Dent Res 41:321–327

    Article  Google Scholar 

  35. Banas JA, Drake DR (2018) Are the mutans streptococci still considered relevant to understanding the microbial etiology of dental caries? BMC Oral Health 18(1):129. https://doi.org/10.1186/s12903-018-0595-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiao YH, Chen JH, Fang M, Xing XD, Wang H, Wang YJ, Li F (2008) Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J Oral Sci 50(3):323–327. https://doi.org/10.2334/josnusd.50.323

    Article  PubMed  Google Scholar 

  37. Namba N, Yoshida Y, Nagaoka N, Takashima S, Matsuura-Yoshimoto K, Maeda H, Meerbeek BV, Suzuki K, Takashiba S (2009) Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater 25(4):424–430. https://doi.org/10.1016/j.dental.2008.08.012

    Article  PubMed  Google Scholar 

  38. Zhou C, Weir MD, Zhang K, Deng D, Cheng L, Xu HH (2013) Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite. Dent Mater 29(8):859–870. https://doi.org/10.1016/j.dental.2013.05.005

    Article  PubMed  Google Scholar 

  39. Cheng L, Weir M, Zhang K, Xu S, Chen Q, Zhou X, Xu H (2012) Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. J Dent Res 91(5):460–466. https://doi.org/10.1177/0022034512440579

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gsib O, Duval J-L, Goczkowski M, Deneufchatel M, Fichet O, Larreta-Garde V, Bencherif SA, Egles C (2017) Evaluation of fibrin-based interpenetrating polymer networks as potential biomaterials for tissue engineering. Nanomaterials 7(12):436. https://doi.org/10.3390/nano7120436

    Article  PubMed Central  Google Scholar 

  41. Pupo Y, Bernardo C, Fd S, Michél M, Ribeiro C, Germano S, Maluf DF (2017) Cytotoxicity of etch-and-rinse, self-etch, and universal dental adhesive systems in fibroblast cell line 3T3. Scanning 2017:1–7. https://doi.org/10.1155/2017/9650420

    Article  Google Scholar 

  42. Geurtsen W (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 41(3):474–480. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3

    Article  PubMed  Google Scholar 

  43. Geurtsen W (1999) Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J Biomed Mater Res 48(6):772–777. https://doi.org/10.1002/(sici)1097-4636(1999)48:6

    Article  PubMed  Google Scholar 

  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  PubMed  Google Scholar 

  45. Elias ST, Santos AF, Garcia FCP, Pereira PNR, Hilgert LA, Fonseca-Bazzo YM, Guerra ENS, Ribeiro APD (2015) Cytotoxicity of universal, self-etching and etch-and-rinse adhesive systems according to the polymerization time. Braz Dent J 26(2):160–168. https://doi.org/10.1590/0103-6440201300294

    Article  PubMed  Google Scholar 

  46. ISO/TS 11405, Dental materials—Testing of adhesion to tooth structure (2003). International Organization for Standardization, Geneva, Switzerland

  47. Rêgo HMC, Alves TS, Bresciani E, Niu L, Tay FR, Pucci CR (2016) Can long-term dentine bonding created in real life be forecasted by parameters established in the laboratory? Sci Report 6:1–8. https://doi.org/10.1038/srep37799

    Article  Google Scholar 

  48. Pashley DH, Tay FR, Imazato S (2011) How to increase the durability of resin-dentin bonds. Compend Contin Educ Dent 32(7):60–66

    PubMed  Google Scholar 

  49. Ilie N, Hilton TJ, Heintze SD, Hickel R, Watts DC, Silikas N, Stansbury JW, Cadenaro M, Ferracane JL (2017) Academy of Dental Materials guidance-resin composites: Part I-mechanical properties. Dent Mater 33(8):880–894. https://doi.org/10.1016/j.dental.2017.04.013

    Article  PubMed  Google Scholar 

  50. Sideridou I, Tserki V, Papanastasiou G (2003) Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 24(4):655–665. https://doi.org/10.1016/s0142-9612(02)00380-0

    Article  PubMed  Google Scholar 

  51. St-Georges AJ, Swift EJ, Thompson JY, Heymann HO (2003) Irradiance effects on the mechanical properties of universal hybrid and flowable hybrid resin composites. Dent Mater 19(5):406–413. https://doi.org/10.1016/s0109-5641(02)00084-2

    Article  PubMed  Google Scholar 

  52. Asmussen E, Peutzfeldt A (2003) Two-step curing: influence on conversion and softening of a dental polymer. Dent Mater 19(6):466–470. https://doi.org/10.1016/s0109-5641(02)00091-x

    Article  PubMed  Google Scholar 

  53. Soh MS, Yap AU (2004) Influence of curing modes on crosslink density in polymer structures. J Dent 32(4):321–326. https://doi.org/10.1016/j.jdent.2004.01.012

    Article  PubMed  Google Scholar 

  54. Filho JD, Poskus LT, Guimaraes JG, Barcellos AA, Silva EM (2008) Degree of conversion and plasticization of dimethacrylate-based polymeric matrices: influence of light-curing mode. J Oral Sci 50(3):315–321. https://doi.org/10.2334/josnusd.50.315

    Article  PubMed  Google Scholar 

  55. Schneider LF, Moraes RR, Cavalcante LM, Sinhoreti MA, Correr-Sobrinho L, Consani S (2008) Cross-link density evaluation through softening tests: effect of ethanol concentration. Dent Mater 24(2):199–203. https://doi.org/10.1016/j.dental.2007.03.010

    Article  PubMed  Google Scholar 

  56. Rodrigues SB, Collares FM, Leitune VC, Schneider LF, Ogliari FA, Petzhold CL, Samuel SM (2015) Influence of hydroxyethyl acrylamide addition to dental adhesive resin. Dent Mater 31(12):1579–1586. https://doi.org/10.1016/j.dental.2015.10.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Peter Bush, Mr. Stephen Vanyo, and Mr. Steve Makowka for their assistance with SEM, MTT assay, and hardness testing, respectively and Dr. Stefan Ruhl for donating the cells for the antibacterial study. This paper is based on the thesis dissertation submitted in partial fulfillment of the requirements for the degree of Master of Sciences in Forensic Science in the Chemistry Department of Buffalo State College at SUNY (thesis major advisor: Associate Professor Camila Sabatini).

Funding

This work was supported by the Innovative Micro-Programs Accelerating Collaboration in Themes (IMPACT) award from the University at Buffalo to Dr. Camila Sabatini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Sabatini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

N/A. Research did not involve human participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, H., Jones, M.M., Huo, N. et al. Biocompatibility, mechanical, and bonding properties of a dental adhesive modified with antibacterial monomer and cross-linker. Clin Oral Invest 25, 2877–2889 (2021). https://doi.org/10.1007/s00784-020-03605-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03605-w

Keywords

Navigation