Skip to main content

Advertisement

Log in

Effects of air-abrasion pressure on mechanical and bonding properties of translucent zirconia

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this in vitro study was to investigate the effects of different air-abrasion pressures on flexural strength and shear bond strength of a translucent zirconia.

Materials and methods

The translucent zirconia surface was treated with 50 μm abrasive alumina particles at different pressure: 0.1 MPa; 0.2 MPa; 0.3 MPa; 0.4 MPa; 0.5 MPa; untreated specimens were used as control group (n = 33). For each group, three-point bending test was used to evaluate the flexural strength, and surface characterizations were analyzed. Following adhesive bonding and water storage for 24 h, specimens were subdivided into groups baseline and aged (5000 thermocycles). Then, shear bond strength was measured and failure mode was recorded. Statistical analysis was performed with one-way ANOVA and Tukey test (α = 0.05).

Results

Increasing air-abrasion pressure (0.3 MPa, 0.4 MPa, and 0.5 MPa) decreased the flexural strength. Higher air-abrasion pressure resulted in rougher zirconia surfaces and caused more microcracks. The highest shear bond strength was obtained for zirconia surfaces abraded at 0.2 MPa (15.88 ± 2.70 MPa) and 0.3 MPa (14.32 ± 1.12 MPa). Aging did not decrease the strength for all groups except control group (p < 0.001).

Conclusions

Air-abrasion with 50 μm abrasive alumina particles at 0.2 MPa could achieve good strength for translucent zirconia ceramics while maintaining adequate and durable bonding with resin cement.

Clinical relevance

A total of 0.2 MPa is recommended for air-abrasion procedure applied before a dental restoration fabricated with translucent zirconia is bonded to resin cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J (2016) Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 32:e327–e337. https://doi.org/10.1016/j.dental.2016.09.025

    Article  PubMed  Google Scholar 

  2. Kwon SJ, Lawson NC, Mclaren EE, Nejat AH, Burgess JO (2018) Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 120:132–137. https://doi.org/10.1016/j.prosdent.2017.08.004

    Article  PubMed  Google Scholar 

  3. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307. https://doi.org/10.1016/j.dental.2007.05.007

    Article  PubMed  Google Scholar 

  4. Zhang Y, Lawn BR (2018) Novel zirconia materials in dentistry. J Dent Res 97:140–147. https://doi.org/10.1177/0022034517737483

    Article  PubMed  Google Scholar 

  5. Le M, Larsson C, Papia E (2019) Bond strength between MDP-based cement and translucent zirconia. Dent Mater J 38:480–489. https://doi.org/10.4012/dmj.2018-194

    Article  PubMed  Google Scholar 

  6. Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T (2017) Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent 117:303–309. https://doi.org/10.1016/j.prosdent.2016.06.010

    Article  PubMed  Google Scholar 

  7. Willems E, Zhang F, Van Meerbeek B, Vleugels J (2019) Iron oxide colouring of highly-translucent 3Y-TZP ceramics for dental restorations. J Eur Ceram Soc 39:499–507. https://doi.org/10.1016/j.jeurceramsoc.2018.09.043

    Article  Google Scholar 

  8. Tong H, Tanaka CB, Kaizer MR, Zhang Y (2016) Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int 42:1077–1085. https://doi.org/10.1016/j.ceramint.2015.09.033

    Article  PubMed  PubMed Central  Google Scholar 

  9. Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, Zhang F, Vleugels J, Van Meerbeek B, Minakuchi S (2018) Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater 34:508–518. https://doi.org/10.1016/j.dental.2017.12.008

    Article  PubMed  Google Scholar 

  10. Manziuc MM, Gasparik C, Negucioiu M, Constantiniuc M, Burde A, Vlas I, Dudea D (2019) Optical properties of translucent zirconia: a review of the literature. EuroBiotech Journal 3:45–51. https://doi.org/10.2478/ebtj-2019-0005

  11. Chen YM, Smales RJ, Yip KHK, Sung WJ (2008) Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 24:1506–1511. https://doi.org/10.1016/j.dental.2008.03.010

    Article  PubMed  Google Scholar 

  12. Shahmiri R, Standard OC, Hart JN, Sorrell CC (2018) Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prosthet Dent 119:36–46. https://doi.org/10.1016/j.prosdent.2017.07.009

    Article  PubMed  Google Scholar 

  13. Carrabba M, Keeling AJ, Aziz A, Vichi A, Fonzar RF, Wood D, Ferrari M (2017) Translucent zirconia in the ceramic scenario for monolithic restorations: a flexural strength and translucency comparison test. J Dent 60:70–76. https://doi.org/10.1016/j.jdent.2017.03.002

    Article  PubMed  Google Scholar 

  14. Ozcan M, Bernasconi M (2015) Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J Adhes Dent 17:7–26. https://doi.org/10.3290/j.jad.a33525

    Article  PubMed  Google Scholar 

  15. Papia E, Larsson C, du Toit M, von Steyern PV (2014) Bonding between oxide ceramics and adhesive cement systems: a systematic review. J Biomed Mater Res B Appl Biomater 102:395–413. https://doi.org/10.1002/jbm.b.33013

    Article  PubMed  Google Scholar 

  16. Hallmann L, Ulmer P, Wille S, Polonskyi O, Kobel S, Trottenberg T, Bornholdt S, Haase F, Kersten H, Kern M (2016) Effect of surface treatments on the properties and morphological change of dental zirconia. J Prosthet Dent 115:341–349. https://doi.org/10.1016/j.prosdent.2015.09.007

    Article  PubMed  Google Scholar 

  17. Kern M (2009) Resin bonding to oxide ceramics for dental restorations. J Adhes Sci Technol 23:1097–1111. https://doi.org/10.1163/ej.9789004172715.i-286.35

    Article  Google Scholar 

  18. Sasse M, Eschbach S, Kern M (2012) Randomized clinical trial on single retainer all-ceramic resin-bonded fixed partial dentures: influence of the bonding system after up to 55 months. J Dent 40:783–786. https://doi.org/10.1016/j.jdent.2012.05.009

    Article  PubMed  Google Scholar 

  19. Thompson JY, Stoner BR, Piascik JR, Smith R (2011) Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent Mater 27:71–82. https://doi.org/10.1016/j.dental.2010.10.022

    Article  PubMed  Google Scholar 

  20. Chintapalli RK, Rodriguez AM, Marro FG, Anglada M (2014) Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J Mech Behav Biomed Mater 29:126–137. https://doi.org/10.1016/j.jmbbm.2013.09.004

    Article  PubMed  Google Scholar 

  21. Kern M (2015) Bonding to oxide ceramics-laboratory testing versus clinical outcome. Dent Mater 31:8–14. https://doi.org/10.1016/j.dental.2014.06.007

    Article  PubMed  Google Scholar 

  22. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, Van Meerbeek B, Hayakawa S (2017) Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep 7:45563. https://doi.org/10.1038/srep45563

    Article  PubMed  PubMed Central  Google Scholar 

  23. Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J (2015) Aging resistance of surface-treated dental zirconia. Dent Mater 31:182–194. https://doi.org/10.1016/j.dental.2014.11.018

    Article  PubMed  Google Scholar 

  24. Kern M, Barloi A, Yang B (2009) Surface conditioning influences zirconia ceramic bonding. J Dent Res 88:817–822. https://doi.org/10.1177/0022034509340881

    Article  PubMed  Google Scholar 

  25. Yagawa S, Komine F, Fushiki R, Kubochi K, Kimura F, Matsumura H (2018) Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. J Prosthodont Res 62:204–209. https://doi.org/10.1016/j.jpor.2017.08.011

    Article  PubMed  Google Scholar 

  26. Souza ROA, Valandro LF, Melo RM, Machado JPB, Bottino MA, Ozcan M (2013) Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 26:155–163. https://doi.org/10.1016/j.jmbbm.2013.04.018

    Article  PubMed  Google Scholar 

  27. Kosmac T, Oblak C, Marion L (2008) The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 28:1085–1090. https://doi.org/10.1016/j.jeurceramsoc.2007.09.013

    Article  Google Scholar 

  28. Scherrer SS, Cattani-Lorente M, Vittecoq E, de Mestral F, Griggs JA, Wiskott HW (2011) Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dent Mater 27:e28–e42. https://doi.org/10.1016/j.dental.2010.10.003

    Article  PubMed  Google Scholar 

  29. Guess PC, Zhang Y, Kim JW, Rekow ED, Thompson VP (2010) Damage and reliability of Y-TZP after cementation surface treatment. J Dent Res 89:592–596. https://doi.org/10.1177/0022034510363253

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y (2018) Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res 97:1222–1228. https://doi.org/10.1177/0022034518771287

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aung SSP, Takagaki T, Lyann SK, Ikeda M, Inokoshi M, Sadr A, Nikaido T, Tagami J (2019) Effects of alumina-blasting pressure on the bonding to super/ultra-translucent zirconia. Dent Mater 35:730–739. https://doi.org/10.1016/j.dental.2019.02.025

    Article  PubMed  Google Scholar 

  32. Pick B, Meira JBC, Driemeier L, Braga RR (2010) A critical view on biaxial and short-term uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses. Dent Mater 26:83–90. https://doi.org/10.1016/j.dental.2009.09.002

    Article  PubMed  Google Scholar 

  33. Toraya H, Yoshimura M, Somiya S (1984) Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by X-Ray diffraction. J Am Ceram Soc 67:C119–C121. https://doi.org/10.1111/j.1151-2916.1984.tb19715.x

    Article  Google Scholar 

  34. Su NC, Yue L, Liao YM, Liu WJ, Zhang H, Li X, Wang H, Shen JF (2015) The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. J Adv Prosthodont 7:214–223. https://doi.org/10.4047/jap.2015.7.3.214

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boccaccini AR, Winkler V (2002) Fracture surface roughness and toughness of Al2O3-platelet reinforced glass matrix composites. Compos Part A 33:125–131. https://doi.org/10.1016/s1359-835x(01)00080-x

    Article  Google Scholar 

  36. Saka M, Yuzugullu B (2013) Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering. J Adv Prosthodont 5:485–493. https://doi.org/10.4047/jap.2013.5.4.485

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y (2014) Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 30:1195–1203. https://doi.org/10.1016/j.dental.2014.08.375

    Article  PubMed  PubMed Central  Google Scholar 

  38. ISO 6872 (2015) Dentistry—ceramic materials. International Organization for Standardization, Geneva https://www.iso.org/standard/59936.html. (accessed on 25th August, 2019)

  39. Luthra R, Kaur P (2016) An insight into current concepts and techniques in resin bonding to high strength ceramics. Aust Dent J 61:163–173. https://doi.org/10.1111/adj.12365

    Article  PubMed  Google Scholar 

  40. Zhang Y, Lawn BR, Rekow ED, Thompson VP (2004) Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 71:381–386. https://doi.org/10.1002/jbm.b.30097

    Article  PubMed  Google Scholar 

  41. Kitano Y, Mori Y, Ishitani A, Masaki T (1988) Rhombohedral phase in Y2O3-partially-stabilized ZrO2. J Am Ceram Soc 71:C34–C36. https://doi.org/10.1111/j.1151-2916.1988.tb05776.x

    Article  Google Scholar 

  42. Chintapalli RK, Marro FG, Jimenez-Pique E, Anglada M (2013) Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent Mater 29:566–572. https://doi.org/10.1016/j.dental.2013.03.005

    Article  PubMed  Google Scholar 

  43. Komine F, Fushiki R, Koizuka M, Taguchi K, Kamio S, Matsumura H (2012) Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework. J Oral Sci 54:39–46. https://doi.org/10.2334/josnusd.54.39

    Article  PubMed  Google Scholar 

  44. Quaas AC, Yang B, Kern M (2007) Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater 23:506–512. https://doi.org/10.1016/j.dental.2006.03.008

    Article  PubMed  Google Scholar 

  45. Yang B, Wolfart S, Scharnberg M, Ludwig K, Adelung R, Kern M (2007) Influence of contamination on zirconia ceramic bonding. J Dent Res 86:749–753. https://doi.org/10.1177/154405910708600812

    Article  PubMed  Google Scholar 

  46. Yang B, Lange-Jansen HC, Scharnberg M, Wolfart S, Ludwig K, Adelung R, Kern M (2008) Influence of saliva contamination on zirconia ceramic bonding. Dent Mater 24:508–513. https://doi.org/10.1016/j.dental.2007.04.013

    Article  PubMed  Google Scholar 

  47. Yang B, Barloi A, Kern M (2010) Influence of air abrasion on zirconia ceramic bonding using an adhesive composite resin. Dent Mater 26:44–50. https://doi.org/10.1016/j.dental.2009.08.008

    Article  PubMed  Google Scholar 

  48. Shanin R, Kern M (2010) Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging. Dent Mater 26:922–928. https://doi.org/10.1016/j.dental.2010.06.006

    Article  Google Scholar 

  49. Zhao P, Yu P, Xiong Y, Yue L, Arola D, Gao S (2020) Does the bond strength of highly translucent zirconia show a different dependence on the airborne-particle abrasion parameters in comparison to conventional zirconia? J Prosthodont Res 64:60–70. https://doi.org/10.1016/j.jpor.2019.04.008

    Article  PubMed  Google Scholar 

  50. Moon JE, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR (2016) Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement. Ceram Int 42:1552–1562. https://doi.org/10.1016/j.ceramint.2015.09.104

    Article  Google Scholar 

  51. Zhang Y, Lawn BR, Malament KA, Thompson VP, Rekow ED (2006) Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 19:442–448 https://www.researchgate.net/publication/6482148_Damage_accumulation_and_fatigue_life_of_particle-abraded_ceramics. (accessed on 7th November, 2019)

  52. Cognard J (2006) Some recent progress in adhesion technology and science. C R Chim 9:13–24. https://doi.org/10.1016/j.crci.2004.11.016

  53. Hallmann L, Ulmer P, Lehmann F, Wille S, Polonskyi O, Johannes M, Kobel S, Trottenberg T, Bornholdt S, Haase F, Kersten H, Kern M (2016) Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent Mater 32:631–639. https://doi.org/10.1016/j.dental.2016.02.001

    Article  PubMed  Google Scholar 

  54. Schmid-Schwap M, Graf A, Preinerstorfer A, Watts DC, Piehslinger E, Schedle A (2011) Microleakage after thermocycling of cemented crowns—a meta-analysis. Dent Mater 27:855–869. https://doi.org/10.1016/j.dental.2011.05.002

    Article  PubMed  Google Scholar 

  55. ISO 10477 (2004) Dentistry—Polymer-based crown and bridge materials. International Organization for Standardization, Geneva https://www.iso.org/standard/33709.html. (accessed on 25th August, 2019)

  56. Tanis MC, Akcaboy C (2015) Effects of different surface treatment methods and MDP monomer on resin cementation of zirconia ceramics an in vitro study. J Lasers Med Sci 6:174–181. https://doi.org/10.15171/jlms.2015.15

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen C, Kleverlaan CJ, Feilzer AJ (2012) Effect of an experimental zirconia-silica coating technique on microtensile bond strength of zirconia in different priming conditions. Dent Mater 28:127–134. https://doi.org/10.1016/j.dental.2012.04.020

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Y.C. Zheng and UPCERA Inc. for supplying zirconia ceramics.

Funding

This study was funded by National Natural Science Foundation of China (grant number 81671032, JLW)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xinyan Zhang, Wei Liang, Feng Jiang, Zonghua Wang, Jiaxin Zhao, Chuanjian Zhou, and Junling Wu. The first draft of the manuscript was written by Xinyan Zhang and Wei Liang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junling Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent was not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xinyan Zhang and Wei Liang are Co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, W., Jiang, F. et al. Effects of air-abrasion pressure on mechanical and bonding properties of translucent zirconia. Clin Oral Invest 25, 1979–1988 (2021). https://doi.org/10.1007/s00784-020-03506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03506-y

Keywords

Navigation