Skip to main content

Advertisement

Log in

Microstructural composition, ion release, and bioactive potential of new premixed calcium silicate–based endodontic sealers indicated for warm vertical compaction technique

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the microstructural composition, ion release, cytocompatibility, and mineralization potential of Bio-C Sealer ION+ (BCI) and EndoSequence BC Sealer HiFlow (BCHiF), compared with AH Plus (AHP), in contact with human periodontal ligament cells (hPDLCs).

Materials and methods

The sealers’ ionic composition and release were assessed using energy-dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. For the biological assays, hPDLCs were isolated from third molars, and sealer extracts were prepared (undiluted, 1:2, and 1:4 ratios). An MTT assay, wound-healing assay, and cell morphology and adhesion analysis were performed. Activity-related gene expression was determined using RT-qPCR, and mineralization potential was assessed using Alizarin Red staining (ARS). Statistical analyses were performed using one-way ANOVA and Tukey’s post hoc test (α < 0.05).

Results

The three sealers exhibited variable levels of silicon, calcium, zirconium, and tungsten release and in their composition. Both BCI and BCHiF groups showed positive results in cytocompatibility assays, unlike AHP. The BCHiF group showed an upregulation of CAP (p < 0.01), CEMP1, ALP, and RUNX2 (p < 0.001) compared with the negative control, while the BCI group showed an upregulation of CEMP1 (p < 0.01), CAP, and RUNX2 (p < 0.001). Both groups also exhibited a greater mineralization potential than the negative and positive controls (p < 0.001).

Conclusions

The calcium silicate–based sealers considered in the present in vitro study exhibited a high calcium ion release, adequate cytocompatibility, upregulated osteo/cementogenic gene expression, and increased mineralized nodule formation in contact with hPDLCs.

Clinical relevance

From a biological perspective, BCI and BCHiF could be clinically suitable for root canal filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Primus CM, Tay FR, Niu LN (2019) Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues. Acta Biomater 96:35–54. https://doi.org/10.1016/j.actbio.2019.05.050

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fonseca DA, Paula AB, Marto CM, Coelho A, Paulo S, Martinho JP, Carrilho E, Ferreira MM (2019) Biocompatibility of root canal sealers: a systematic review of in vitro and in vivo studies. Materials (Basel) 12. https://doi.org/10.3390/ma12244113

  3. Sanz JL, Rodriguez-Lozano FJ, Llena C, Sauro S, Forner L (2019) Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials (Basel) 12. https://doi.org/10.3390/ma12071015

  4. Chybowski EA, Glickman GN, Patel Y, Fleury A, Solomon E, He J (2018) Clinical outcome of non-surgical root canal treatment using a single-cone technique with endosequence bioceramic sealer: a retrospective analysis. J Endod 44:941–945. https://doi.org/10.1016/j.joen.2018.02.019

    Article  PubMed  Google Scholar 

  5. Zavattini A, Knight A, Foschi F, Mannocci F (2020) Outcome of root canal treatments using a new calcium silicate root canal sealer: a non-randomized clinical trial. J Clin Med 9. https://doi.org/10.3390/jcm9030782

  6. Lopez-Garcia S, Myong-Hyun B, Lozano A, Garcia-Bernal D, Forner L, Llena C, Guerrero-Girones J, Murcia L, Rodriguez-Lozano FJ (2020) Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clin Oral Investig 24:1749–1759. https://doi.org/10.1007/s00784-019-03036-2

    Article  PubMed  Google Scholar 

  7. Seo DG, Lee D, Kim YM, Song D, Kim SY (2019) Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells. Materials (Basel):12. https://doi.org/10.3390/ma12152482

  8. Zordan-Bronzel CL, Tanomaru-Filho M, Rodrigues EM, Chavez-Andrade GM, Faria G, Guerreiro-Tanomaru JM (2019) Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer. Int Endod J 52:979–986. https://doi.org/10.1111/iej.13086

    Article  PubMed  Google Scholar 

  9. Vallittu PK, Boccaccini AR, Hupa L, Watts DC (2018) Bioactive dental materials-do they exist and what does bioactivity mean? Dent Mater 34:693–694. https://doi.org/10.1016/j.dental.2018.03.001

    Article  PubMed  Google Scholar 

  10. Donnermeyer D, Burklein S, Dammaschke T, Schafer E (2019) Endodontic sealers based on calcium silicates: a systematic review. Odontology 107:421–436. https://doi.org/10.1007/s10266-018-0400-3

    Article  PubMed  Google Scholar 

  11. Holland R, Gomes JEF, Cintra LTA, Queiroz IOA, Estrela C (2017) Factors affecting the periapical healing process of endodontically treated teeth. J Appl Oral Sci 25:465–476. https://doi.org/10.1590/1678-7757-2016-0464

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535. https://doi.org/10.1177/154405910208100806

    Article  PubMed  Google Scholar 

  13. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171. https://doi.org/10.1016/j.joen.2007.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, Yang Q, Wang C, Duan Y, Jin Y (2011) Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 17:1015–1026. https://doi.org/10.1089/ten.tea.2010.0140

    Article  PubMed  Google Scholar 

  15. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR (2016) Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endod 42:47–56. https://doi.org/10.1016/j.joen.2015.10.019

    Article  PubMed  Google Scholar 

  16. da Rosa WLO, Piva E, da Silva AF (2018) Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 51:829–846. https://doi.org/10.1111/iej.12906

    Article  PubMed  Google Scholar 

  17. Tomokiyo A, Wada N, Maeda H (2019) Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev 28:974–985. https://doi.org/10.1089/scd.2019.0031

    Article  PubMed  Google Scholar 

  18. Atmeh AR, Hadis M, Camilleri J (2020) Real-time chemical analysis of root filling materials with heating: guidelines for safe temperature levels. Int Endod J 53:698–708. https://doi.org/10.1111/iej.13269

    Article  PubMed  Google Scholar 

  19. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR (2007) Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 35:636–642. https://doi.org/10.1016/j.jdent.2007.04.008

    Article  PubMed  Google Scholar 

  20. Tomson PL, Lumley PJ, Smith AJ, Cooper PR (2017) Growth factor release from dentine matrix by pulp-capping agents promotes pulp tissue repair-associated events. Int Endod J 50:281–292. https://doi.org/10.1111/iej.12624

    Article  PubMed  Google Scholar 

  21. ISO 10993-5. Biological evaluation of medical devices. Part 5. Test for in vitro cytotoxicity. 2009

  22. Rodríguez-Lozano FJ, López-García S, García-Bernal D, Tomás-Catalá CJ, Santos JM, Llena C, Lozano A, Murcia L, Forner L (2020) Chemical composition and bioactivity potential of the new Endosequence BC Sealer formulation HiFlow. Int Endod J. https://doi.org/10.1111/iej.13327

  23. Yue PY, Leung EP, Mak NK, Wong RN (2010) A simplified method for quantifying cell migration/wound healing in 96-well plates. J Biomol Screen 15:427–433. https://doi.org/10.1177/1087057110361772

    Article  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  Google Scholar 

  25. Viapiana R, Baluci CA, Tanomaru-Filho M, Camilleri J (2015) Investigation of chemical changes in sealers during application of the warm vertical compaction technique. Int Endod J 48:16–27. https://doi.org/10.1111/iej.12271

    Article  PubMed  Google Scholar 

  26. Atmeh AR, AlShwaimi E (2017) The effect of heating time and temperature on epoxy resin and calcium silicate-based endodontic sealers. J Endod 43:2112–2118. https://doi.org/10.1016/j.joen.2017.08.008

    Article  PubMed  Google Scholar 

  27. Lee JK, Kim S, Lee S, Kim HC, Kim E (2019) In vitro comparison of biocompatibility of calcium silicate-based root canal sealers. Materials (Basel):12. https://doi.org/10.3390/ma12152411

  28. Giacomino CM, Wealleans JA, Kuhn N, Diogenes A (2019) Comparative biocompatibility and osteogenic potential of two bioceramic sealers. J Endod 45:51–56. https://doi.org/10.1016/j.joen.2018.08.007

    Article  PubMed  Google Scholar 

  29. Sultana N, Singh M, Nawal RR, Chaudhry S, Yadav S, Mohanty S, Talwar S (2018) Evaluation of biocompatibility and osteogenic potential of tricalcium silicate-based cements using human bone marrow-derived mesenchymal stem cells. J Endod 44:446–451. https://doi.org/10.1016/j.joen.2017.11.016

    Article  PubMed  Google Scholar 

  30. Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM, Rodriguez-Lozano FJ (2017) Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 50:E63–E72. https://doi.org/10.1111/iej.12859

    Article  PubMed  Google Scholar 

  31. Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG (2017) Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 50(Suppl 2):e120–e136. https://doi.org/10.1111/iej.12856

    Article  PubMed  Google Scholar 

  32. Lopez-Garcia S, Pecci-Lloret MR, Guerrero-Girones J, Pecci-Lloret MP, Lozano A, Llena C, Rodriguez-Lozano FJ, Forner L (2019) Comparative cytocompatibility and mineralization potential of Bio-C Sealer and TotalFill BC Sealer. Materials (Basel) 12. https://doi.org/10.3390/ma12193087

  33. Rodriguez-Lozano FJ, Collado-Gonzalez M, Lopez-Garcia S, Garcia-Bernal D, Moraleda JM, Lozano A, Forner L, Murcia L, Onate-Sanchez RE (2019) Evaluation of changes in ion release and biological properties of NeoMTA-Plus and Endocem-MTA exposed to an acidic environment. Int Endod J 52:1196–1209. https://doi.org/10.1111/iej.13107

    Article  PubMed  Google Scholar 

  34. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I (2005) Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 31:97–100. https://doi.org/10.1097/01.don.0000133155.04468.41

    Article  PubMed  Google Scholar 

  35. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F (2014) Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 30:50–61. https://doi.org/10.1016/j.dental.2013.08.202

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim JR, Nosrat A, Fouad AF (2015) Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent 43:241–247. https://doi.org/10.1016/j.jdent.2014.11.004

    Article  PubMed  Google Scholar 

  37. Han J, Menicanin D, Marino V, Ge S, Mrozik K, Gronthos S, Bartold PM (2014) Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J Periodontal Res 49:333–345. https://doi.org/10.1111/jre.12111

    Article  PubMed  Google Scholar 

  38. Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S (2014) Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 23:1001–1011. https://doi.org/10.1089/scd.2013.0490

    Article  PubMed  Google Scholar 

  39. Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodriguez-Lozano FJ (2017) Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 50:875–884. https://doi.org/10.1111/iej.12703

    Article  PubMed  Google Scholar 

  40. Chen B, Haapasalo M, Mobuchon C, Li X, Ma J, Shen Y (2020) Cytotoxicity and the effect of temperature on physical properties and chemical composition of a new calcium silicate-based root canal sealer. J Endod 46:531–538. https://doi.org/10.1016/j.joen.2019.12.009

    Article  PubMed  Google Scholar 

  41. Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, Almadhri R, Alfayez M, Anil S (2018) Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules 8. https://doi.org/10.3390/biom8030068

  42. Wang Y, Zhou Y, Jin L, Pang X, Lu Y, Wang Z, Yu Y, Yu J (2018) Mineral trioxide aggregate enhances the osteogenic capacity of periodontal ligament stem cells via NF-kappaB and MAPK signaling pathways. J Cell Physiol 233:2386–2397. https://doi.org/10.1002/jcp.26110

    Article  PubMed  Google Scholar 

  43. Li J, Zhang F, Zhang N, Geng X, Meng C, Wang X, Yang Y (2019) Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ 7:e6589. https://doi.org/10.7717/peerj.6589

    Article  PubMed  PubMed Central  Google Scholar 

  44. Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323. https://doi.org/10.1007/s00418-018-1640-6

    Article  PubMed  Google Scholar 

  45. Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I (2012) Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cell Physiol 227:649–657. https://doi.org/10.1002/jcp.22770

    Article  PubMed  Google Scholar 

  46. Han P, Ivanovski S, Crawford R, Xiao Y (2015) Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30:1160–1174. https://doi.org/10.1002/jbmr.2445

    Article  PubMed  Google Scholar 

  47. Olcay K, Tasli PN, Guven EP, Ulker GMY, Ogut EE, Ciftcioglu E, Kiratli B, Sahin F (2020) Effect of a novel bioceramic root canal sealer on the angiogenesis-enhancing potential of assorted human odontogenic stem cells compared with principal tricalcium silicate-based cements. J Appl Oral Sci 28:e20190215. https://doi.org/10.1590/1678-7757-2019-0215

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Spanish Network of Cell Therapy (TerCel), RETICS subprograms of the I+D+I 2013–2016 Spanish National Plan, project “RD16/0011/0001” funded by the Instituto de Salud Carlos III to JMM and co-funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

Investigation and methodology: Sergio López-García, Francisco Javier Rodríguez Lozano, and José Luis Sanz; supervision, visualization, conceptualization, and data curation: Adrián Lozano and Julia Guerrero-Gironés; investigation, methodology, and writing—original draft: José Luis Sanz and Francisco Javier Rodríguez-Lozano; conceptualization, formal analysis, project administration, supervision, validation, and writing—review and editing: Leopoldo Forner, Carmen Llena, and Maria Pilar Pecci-Lloret; investigation, methodology, project administration, resources, writing—original draft, and writing—review and editing: José Luis Sanz, Francisco Javier Rodríguez-Lozano, and Leopoldo Forner. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to F. J. Rodríguez-Lozano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

The study protocol was approved by the Clinical Research Ethics Committee of the Universidad de Murcia (ID: 2199/2018). Likewise, permission was obtained from the Health Department authorities to use the information contained in the CDHs, previously anonymized by one of the investigators belonging to the medical staff of the Health Department in order to protect patient confidentiality. All the information was processed in abidance with the confidentiality regulations defined under Act 15/1999 referred to as personal data protection.

Informed consent

Informed consent was obtained from the parents of all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, J.L., López-García, S., Lozano, A. et al. Microstructural composition, ion release, and bioactive potential of new premixed calcium silicate–based endodontic sealers indicated for warm vertical compaction technique. Clin Oral Invest 25, 1451–1462 (2021). https://doi.org/10.1007/s00784-020-03453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03453-8

Keywords

Navigation