Skip to main content

Advertisement

Log in

Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Genetic variants in the hedgehog signaling pathway and VDR gene are involved in inflammatory responses and neoplastic transformation. Current study investigated whether single-nucleotide polymorphisms in the hedgehog pathway genes PTCH1, GLI1, SMO, and VDR contribute to susceptibility to odontogenic cystic lesions, odontogenic keratocysts, or inflammatory radicular cysts.

Material and methods

Current study examined polymorphisms of PTCH1 (rs357564) and PTCH1 insertion (IVS1-83), GLI1 (rs2228224, rs2228226), SMO (rs2228617), and VDR (rs2228570, rs731236, rs7975232). A case-control study was conducted on 41 keratocyst cases, 43 radicular cyst cases, and control group of 93 healthy individuals without cystic lesions, radiographically confirmed. Single-nucleotide polymorphisms were assessed by real-time and TaqMan SNP genotyping assays, while PTCH1 insertion 18 bp IVS1-83 polymorphism was determined by PCR.

Results

The difference in genotype distribution between keratocyst cases and control group was observed for PTCH1 IVS1-83 and GLI1 rs2228224 polymorphism (p = 0.022, p = 0.030, respectively). Homozygous mutant GG genotype within GLI1 rs2228224 is associated with increased susceptibility for odontogenous keratocysts, with adjusted odds ratio of 4.098 (confidence interval of 1.482–11.328, p = 0.007).

Conclusion

GLI1 rs2228224 and PTCH1 polymorphisms could predispose to odontogenic keratocysts.

Clinical relevance

Variants in hedgehog signaling pathway genes, such as GLI1 and PTCH1, and vitamin D receptor gene, might be considered as molecular risk factors in odontogenic cystic lesions and potential targets for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bilodeau EA, Collins BM (2017) Odontogenic cysts and neoplasms. Surg Pathol Clin 10(1):177–222. https://doi.org/10.1016/j.path.2016.10.006

  2. Nayak MT, Singh A, Singhvi A, Sharma R (2013) Odontogenic keratocyst: what is in the name? J Nat Sci Biol Med 4(2):282–285. https://doi.org/10.4103/0976-9668.116968

  3. Speight PM, Takata T (2017) New tumour entities in the 4th edition of the World Health Organization classification of head and neck tumours: odontogenic and maxillofacial bone tumours. Virchows Arch 472:331–339. https://doi.org/10.1007/s00428-017-2182-3

  4. Grachtchouk M, Liu J, Wang A, Wei L, Bichakjian CK, Garlick J, Paulino AF, Giordano T, Dlugosz AA (2006) Odontogenic keratocysts arise from quiescent epithelial rests and are associated with deregulated hedgehog signaling in mice and humans. Am J Pathol 169(3):806–814. https://doi.org/10.2353/ajpath.2006.060054

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shimada Y, Katsube K, Kabasawa Y, Morita K, Omura K, Yamaguchi A, Sakamoto K (2013) Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features. PLoS One 8(8):e70995. https://doi.org/10.1371/journal.pone.0070995

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gorlin RJ, Goltz RW (1960) Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. New Engl J Med 262:908–912. https://doi.org/10.1056/NEJM196005052621803

    Article  PubMed  Google Scholar 

  7. Aiello NM, Stanger BZ (2016) Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech 9(2):105–114. https://doi.org/10.1242/dmm.023184

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rahnama F, Shimokawa T, Lauth M, Finta C, Kogerman P, Teglund S, Toftgard R, Zaphiropoulos PG (2006) Inhibition of GLI1 gene activation by Patched1. The Biochem J 394(Pt 1):19–26. https://doi.org/10.1042/BJ20050941

  9. Zhang T, Chen M, Lu Y, Xing Q, Chen W (2011) A novel mutation of the PTCH1 gene activates the Shh/Gli signaling pathway in a Chinese family with nevoid basal cell carcinoma syndrome. Biochem Biophys Res Commun 409(2):166–170. https://doi.org/10.1016/j.bbrc.2011.04.047

    Article  PubMed  Google Scholar 

  10. Ohki K, Kumamoto H, Ichinohasama R, Sato T, Takahashi N, Ooya K (2004) PTC gene mutations and expression of SHH, PTC, SMO, and GLI-1 in odontogenic keratocysts. Int J Oral Maxillofac Surg 33(6):584–592. https://doi.org/10.1016/j.ijom.2004.01.013

    Article  PubMed  Google Scholar 

  11. Mizuochi H, Fujii K, Shiohama T, Uchikawa H, Shimojo N (2015) Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome. Biochem Biophys Res Commun 457(3):318–323. https://doi.org/10.1016/j.bbrc.2014.12.108

    Article  PubMed  Google Scholar 

  12. Jacob J, Briscoe J (2003) Gli proteins and the control of spinal-cord patterning. EMBO Rep 4(8):761–765. https://doi.org/10.1038/sj.embor.embor896

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D, Iannaccone P (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277(7):5548–5555. https://doi.org/10.1074/jbc.M105708200

    Article  PubMed  Google Scholar 

  14. Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, Toftgard R, McDonnell TJ (2004) Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 279(2):1197–1205. https://doi.org/10.1074/jbc.M310589200

    Article  PubMed  Google Scholar 

  15. Louro ID, Bailey EC, Li X, South LS, McKie-Bell PR, Yoder BK, Huang CC, Johnson MR, Hill AE, Johnson RL, Ruppert JM (2002) Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 62(20):5867–5873

    PubMed  Google Scholar 

  16. Vered M, Peleg O, Taicher S, Buchner A (2009) The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts. J Oral Pathol Med 38(7):597–604. https://doi.org/10.1111/j.1600-0714.2009.00778.x

  17. Hadden MK (2016) Hedgehog and vitamin D signaling pathways in development and disease. Vitam Horm 100:231–253. https://doi.org/10.1016/bs.vh.2015.10.006

    Article  PubMed  Google Scholar 

  18. Bandera Merchan B, Morcillo S, Martin-Nunez G, Tinahones FJ, Macias-Gonzalez M (2017) The role of vitamin D and VDR in carcinogenesis: through epidemiology and basic sciences. J Steroid Biochem Mol Biol 167:203–218. https://doi.org/10.1016/j.jsbmb.2016.11.020

    Article  PubMed  Google Scholar 

  19. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  PubMed  Google Scholar 

  20. Lou XY, Chen GB, Yan L, Ma JZ, Mangold JE, Zhu J, Elston RC, Li MD (2008) A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies. Am J Hum Genet 83(4):457–467. https://doi.org/10.1016/j.ajhg.2008.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen GB, Xu Y, Xu HM, Li MD, Zhu J, Lou XY (2011) Practical and theoretical considerations in study design for detecting gene-gene interactions using MDR and GMDR approaches. PLoS One 6(2):e16981. https://doi.org/10.1371/journal.pone.0016981

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241(2):252–261. https://doi.org/10.1016/j.jtbi.2005.11.036

    Article  PubMed  Google Scholar 

  23. Fu X, Wang Q, Chen X, Huang X, Cao L, Tan H, Li W, Zhang L, Bi J, Su Q, Chen L (2008) Expression patterns and polymorphisms of PTCH in Chinese hepatocellular carcinoma patients. Exp Mol Pathol 84(3):195–199. https://doi.org/10.1016/j.yexmp.2008.04.002

    Article  PubMed  Google Scholar 

  24. Lees CW, Zacharias WJ, Tremelling M, Noble CL, Nimmo ER, Tenesa A, Cornelius J, Torkvist L, Kao J, Farrington S, Drummond HE, Ho GT, Arnott ID, Appelman HD, Diehl L, Campbell H, Dunlop MG, Parkes M, Howie SE, Gumucio DL, Satsangi J (2008) Analysis of germline GLI1 variation implicates hedgehog signalling in the regulation of intestinal inflammatory pathways. PLoS Med 5(12):e239. https://doi.org/10.1371/journal.pmed.0050239

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yadav A, Gupta A, Yadav S, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B (2016) Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol 37(6):8083–8095. https://doi.org/10.1007/s13277-015-4728-9

    Article  PubMed  Google Scholar 

  26. Li YY, Tian T, Zhang R, Wang L, Xu J, Fan L, Li JY, Xu W (2014) Association between polymorphism of GLI1 gene SNP rs2228226 and chronic lymphocytic leukemia in Chinese population. Med Oncol (Northwood, London, England) 31(12):294. https://doi.org/10.1007/s12032-014-0294-z

    Article  Google Scholar 

  27. Lim CB, Prele CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ, Mutsaers SE (2013) Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One 8(6):e66685. https://doi.org/10.1371/journal.pone.0066685

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rukin NJ, Strange RC (2007) What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk?. Nutr Rev 65 (8 Pt 2):S96–101

  29. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338(2):143–156. https://doi.org/10.1016/j.gene.2004.05.014

    Article  PubMed  Google Scholar 

  30. Zeljic K, Supic G, Stamenkovic Radak M, Jovic N, Kozomara R, Magic Z (2012) Vitamin D receptor, CYP27B1 and CYP24A1 genes polymorphisms association with oral cancer risk and survival. J Oral Pathol Med 41(10):779–787. https://doi.org/10.1111/j.1600-0714.2012.01164.x

    Article  PubMed  Google Scholar 

  31. Kujundzic B, Zeljic K, Supic G, Magic M, Stanimirovic D, Ilic V, Jovanovic B, Magic Z (2016) Association of vdr, cyp27b1, cyp24a1 and mthfr gene polymorphisms with oral lichen planus risk. Clin Oral Investig 20(4):781–789. https://doi.org/10.1007/s00784-015-1572-7

    Article  PubMed  Google Scholar 

  32. Zhu H, Lo HW (2010) The human glioma-associated oncogene homolog 1 (GLI1) family of transcription factors in gene regulation and diseases. Curr Genomics 11(4):238–245. https://doi.org/10.2174/138920210791233108

  33. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7(10):781–791. https://doi.org/10.1038/nrg1916

    Article  PubMed  Google Scholar 

  34. Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10(6):392–404. https://doi.org/10.1038/nrg2579

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liboutet M, Portela M, Delestaing G, Vilmer C, Dupin N, Gorin I, Saiag P, Lebbe C, Kerob D, Dubertret L, Grandchamp B, Basset-Seguin N, Soufir N (2006) MC1R and PTCH gene polymorphism in French patients with basal cell carcinomas. J Invest Dermatol 126(7):1510–1517. https://doi.org/10.1038/sj.jid.5700263

  36. Guo YY, Zhang JY, Li XF, Luo HY, Chen F, Li TJ (2013) PTCH1 gene mutations in Keratocystic odontogenic tumors: a study of 43 Chinese patients and a systematic review. PLoS One 8(10):e77305. https://doi.org/10.1371/journal.pone.0077305

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gu XM, Zhao HS, Sun LS, Li TJ (2006) PTCH mutations in sporadic and Gorlin-syndrome-related odontogenic keratocysts. J Dent Res 85(9):859–863. https://doi.org/10.1177/154405910608500916

    Article  PubMed  Google Scholar 

  38. Yoon JW, Liu CZ, Yang JT, Swart R, Iannaccone P, Walterhouse D (1998) GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J Biol Chem 273(6):3496–3501

    Article  PubMed  Google Scholar 

  39. Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE (2006) Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 20(3):276–281. https://doi.org/10.1101/gad.1380906

    Article  PubMed  PubMed Central  Google Scholar 

  40. Szkandera J, Pichler M, Absenger G, Stotz M, Weissmueller M, Samonigg H, Asslaber M, Lax S, Leitner G, Winder T, Renner W, Gerger A (2014) A functional germline variant in GLI1 implicates hedgehog signaling in clinical outcome of stage II and III colon carcinoma patients. Clin Cancer Res 20(6):1687–1697. https://doi.org/10.1158/1078-0432.ccr-13-1517

    Article  PubMed  Google Scholar 

  41. Albert B, Hahn H (2014) Interaction of hedgehog and vitamin D signaling pathways in basal cell carcinomas. Adv Exp Med Biol 810:329–341

    PubMed  Google Scholar 

  42. Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M, Mehta RG (2016) Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res 349(1):15–22. https://doi.org/10.1016/j.yexcr.2016.08.012

    Article  PubMed  Google Scholar 

  43. DeBerardinis AM, Banerjee U, Hadden MK (2013) Identification of vitamin d3-based hedgehog pathway inhibitors that incorporate an aromatic a-ring isostere. ACS Med Chem Lett 4(7):590–595. https://doi.org/10.1021/ml400014t

    Article  PubMed  PubMed Central  Google Scholar 

  44. DeBerardinis AM, Banerjee U, Miller M, Lemieux S, Hadden MK (2012) Probing the structural requirements for vitamin D3 inhibition of the hedgehog signaling pathway. Bioorg Med Chem Lett 22(14):4859–4863. https://doi.org/10.1016/j.bmcl.2012.05.037

    Article  PubMed  Google Scholar 

  45. Uhmann A, Niemann H, Lammering B, Henkel C, Hess I, Rosenberger A, Dullin C, Schraepler A, Schulz-Schaeffer W, Hahn H (2012) Calcitriol inhibits hedgehog signaling and induces vitamin d receptor signaling and differentiation in the patched mouse model of embryonal rhabdomyosarcoma. Sarcoma 2012:357040. https://doi.org/10.1155/2012/357040

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ettl T, Gosau M, Sader R, Reichert TE (2012) Jaw cysts - filling or no filling after enucleation? A review. J Craniomaxillofac Surg 40(6):485–493. https://doi.org/10.1016/j.jcms.2011.07.023

    Article  PubMed  Google Scholar 

  47. Ihan Hren N, Miljavec M (2008) Spontaneous bone healing of the large bone defects in the mandible. Int J Oral Maxillofac Surg 37(12):1111–1116. https://doi.org/10.1016/j.ijom.2008.07.008

    Article  PubMed  Google Scholar 

  48. Chiapasco M, Rossi A, Motta JJ, Crescentini M (2000) Spontaneous bone regeneration after enucleation of large mandibular cysts: a radiographic computed analysis of 27 consecutive cases. J Oral Maxillofac Surg 58(9):942–948; discussion 949. https://doi.org/10.1053/joms.2000.8732

    Article  PubMed  Google Scholar 

  49. Motamedi MH, Talesh KT (2005) Management of extensive dentigerous cysts. Br Dent J 198(4):203–206. https://doi.org/10.1038/sj.bdj.4812082

    Article  PubMed  Google Scholar 

  50. Pejovic M, Stepic J, Markovic A, Dragovic M, Milicic B, Colic S (2016) Retrospective study of spontaneous bone regeneration after decompression of large odontogenic cystic lesions in children. Vojnosanit Pregl 73(2):129–134

    Article  PubMed  Google Scholar 

  51. Wang J, Peng Y, Liu Y, Yang J, Ding N, Tan W (2015) Berberine, a natural compound, suppresses hedgehog signaling pathway activity and cancer growth. BMC Cancer 15:595. https://doi.org/10.1186/s12885-015-1596-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Faculty of Medicine, Military Medical Academy, Belgrade, Serbia; Grant: MFVMA/11/16-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Supic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Supplemental Figure 1

Graphical Fruchterman-Rheingold diagram of statistical epistatic interactions between analyzed polymorphisms in PTCH, GLI1, SMO, and VDR gene variants in a) keratocysts and controls b) radicular cysts and controls. Diagram was constructed by using MDR v.3.0.2 software. Red and orange lines represent synergistic interactions; yellow and green represent/indicate weak interactions and blue lines indicate redundancy. (PNG 3226 kb)

High resolution image (TIF 755 kb)

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magic, M., Zeljic, K., Jovandic, S. et al. Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions. Clin Oral Invest 23, 2675–2684 (2019). https://doi.org/10.1007/s00784-018-2686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2686-5

Keywords

Navigation