Skip to main content

Advertisement

Log in

Template-guided vs. non-guided drilling in site preparation of dental implants

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model.

Materials and methods

Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument.

Results

Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001).

Conclusion

Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator.

Clinical relevance

Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85(6):496–500

    Article  PubMed  Google Scholar 

  2. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta OrthopScand 52(2):155–170

    Article  Google Scholar 

  3. Atsumi M, Park SH, Wang HL (2007) Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 22(5):743–754

    PubMed  Google Scholar 

  4. Akca K, Chang TL, Tekdemir I, Fanuscu MI (2006) Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin Oral Implants Res 17(4):465–472

    Article  PubMed  Google Scholar 

  5. Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC (2005) Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Implants Res 16(2):202–209

    Article  PubMed  Google Scholar 

  6. Brunski JB (1992) Biomechanical factors affecting the bone-dental implant interface. Clin Mater 10(3):153–201

    Article  PubMed  Google Scholar 

  7. Haider R, Watzek G, Plenk H (1993) Effects of drill cooling and bone structure on IMZ implant fixation. Int J Oral Maxillofac Implants 8(1):83–91

    PubMed  Google Scholar 

  8. Weiss CM (1986) Tissue integration of dental endosseous implants: description and comparative analysis of the fibro-osseous integration and osseous integration systems. J Oral Implantol 12(2):169–214

    PubMed  Google Scholar 

  9. Queiroz TP, Souza FA, Okamoto R, Margonar R, Pereira-Filho VA, Garcia Junior IR et al (2008) Evaluation of immediate bone-cell viability and of drill wear after implant osteotomies: immunohistochemistry and scanning electron microscopy analysis. J Oral MaxillofacSurg 66(6):1233–1240

    Article  Google Scholar 

  10. Brisman DL (1996) The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 11(1):35–37

    PubMed  Google Scholar 

  11. Tuijthof GJ, Fruhwirt C, Kment C (2013) Influence of tool geometry on drilling performance of cortical and trabecular bone. Med EngPhys 35(8):1165–1172

    Article  Google Scholar 

  12. Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN (2004) The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants 19(3):335–349

    PubMed  Google Scholar 

  13. Karaca F, Aksakal B, Kom M (2011) Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med EngPhys 33(10):1221–1227

    Article  Google Scholar 

  14. Wu SW, Lee CC, Fu PY, Lin SC (2012) The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Med Eng Phys 34(7):797–805

    Article  PubMed  Google Scholar 

  15. Yerby S, Scott CC, Evans NJ, Messing KL, Carter DR (2001) Effect of cutting flute design on cortical bone screw insertion torque and pullout strength. J Orthop Trauma 15(3):216–221

    Article  PubMed  Google Scholar 

  16. Natali C, Ingle P, Dowell J (1996) Orthopaedic bone drills—can they be improved? Temperature changes near the drilling face. J Bone Joint Surg (Br) 78(3):357–362

    Google Scholar 

  17. Markovic A, Calvo-Guirado JL, Lazic Z, Gomez-Moreno G, Calasan D, Guardia J et al (2013) Evaluation of primary stability of self-tapping and non-self-tapping dental implants. A 12-week clinical study. Clin Implant Dent Relat Res 15(3):341–349

    Article  PubMed  Google Scholar 

  18. Cordioli G, Majzoub Z (1997) Heat generation during implant site preparation: an in vitro study. Int J Oral Maxillofac Implants 12(2):186–193

    PubMed  Google Scholar 

  19. Sutter F, Krekeler G, Schwammberger AE, Sutter FJ (1992) A traumatic surgical technique and implant bed preparation. Quintessence Int 23(12):811–816

    PubMed  Google Scholar 

  20. MacAvelia T, Salahi M, Olsen M, Crookshank M, Schemitsch EH, Ghasempoor A et al (2012) Biomechanical measurements of surgical drilling force and torque in human versus artificial femurs. J Biomech Eng 134(12):124503

    Article  PubMed  Google Scholar 

  21. Macavelia T, Ghasempoor A, Janabi-Sharifi F (2012) Force and torque modelling of drilling simulation for orthopaedic surgery. Comput Methods Biomech Biomed Engin

  22. Hobkirk JA, Rusiniak K (1977) Investigation of variable factors in drilling bone. J Oral Surg 35(12):968–973

    PubMed  Google Scholar 

  23. Tehemar SH (1999) Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. Int J Oral Maxillofac Implants 14(1):127–136

    PubMed  Google Scholar 

  24. Vercruyssen M, Jacobs R, Van Assche N, van Steenberghe D (2008) The use of CT scan based planning for oral rehabilitation by means of implants and its transfer to the surgical field: a critical review on accuracy. J Oral Rehabil 35(6):454–474

    Article  PubMed  Google Scholar 

  25. Van Assche N, Vercruyssen M, Coucke W, Teughels W, Jacobs R, Quirynen M (2012) Accuracy of computer-aided implant placement. Clin Oral Implants Res 23(Suppl 6):112–123

    Article  PubMed  Google Scholar 

  26. Koop R, Vercruyssen M, Vermeulen K, Quirynen M (2013) Tolerance within the sleeve inserts of different surgical guides for guided implant surgery. Clin Oral Implants Res 24(6):630–634

    Article  PubMed  Google Scholar 

  27. Schneider D, Marquardt P, Zwahlen M, Jung RE (2009) A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res 20(Suppl 4):73–86

    Article  PubMed  Google Scholar 

  28. Huang HM, Chiu CL, Yeh CY, Lee SY (2003) Factors influencing the resonance frequency of dental implants. J Oral MaxillofacSurg 61(10):1184–1188

    Article  Google Scholar 

  29. Chong L, Khocht A, Suzuki JB, Gaughan J (2009) Effect of implant design on initial stability of tapered implants. J Oral Implantol 35(3):130–135

    Article  PubMed  Google Scholar 

  30. Dos Santos MV, Elias CN, Cavalcanti Lima JH (2011) The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res 13(3):215–223

    Article  PubMed  Google Scholar 

  31. Dhore CR, Snel SJ, Jacques SV, Naert IE, Walboomers XF, Jansen JA (2008) In vitro osteogenic potential of bone debris resulting from placement of titanium screw-type implants. Clin Oral Implants Res 19(6):606–611

    Article  PubMed  Google Scholar 

  32. Vodicka P, Smetana K Jr, Dvorankova B, Emerick T, Xu YZ, Ourednik J et al (2005) The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049:161–171

    Article  PubMed  Google Scholar 

  33. Swindle MM, Makin A, Herron AJ, ClubbFJ J, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356

    Article  PubMed  Google Scholar 

  34. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    PubMed  Google Scholar 

  35. Saha S, Pal S, Albright JA (1982) Surgical drilling: design and performance of an improved drill. J Biomech Eng 104(3):245–252

    Article  PubMed  Google Scholar 

  36. Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9(9):553–559

    Article  PubMed  Google Scholar 

  37. Han S, Rho J, Medige J, Ziv I (1996) Ultrasound velocity and broadband attenuation over a wide range of bone mineral density. OsteoporosInt 6(4):291–296

    Article  Google Scholar 

  38. Ansell RH, Scales JT (1968) A study of some factors which affect the strength of screws and their insertion and holding power in bone. J Biomech 1(4):279–302

    Article  PubMed  Google Scholar 

  39. Siu WS, Qin L, Cheung WH, Leung KS (2004) A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone 35(1):21–26

    Article  PubMed  Google Scholar 

  40. Shuaib I, Hillery M (1995) Forces generated in guide-wires when drilling human bone. ProcInst MechEng H 209(3):157–162

    Article  Google Scholar 

  41. Majumdar S (2003) Current technologies in the evaluation of bone architecture. CurrOsteoporos Rep 1(3):105–109

    Google Scholar 

  42. Bonfield W, Li CH (1968) The temperature dependence of the deformation of bone. J Biomech 1(4):323–329

    Article  PubMed  Google Scholar 

  43. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R (2001) Optimal implant stabilization in low density bone. Clin Oral Implants Res 12(5):423–432

    Article  PubMed  Google Scholar 

  44. O’Sullivan D, Sennerby L, Meredith N (2004) Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res 15(4):474–480

    Article  PubMed  Google Scholar 

  45. Scarano A, Degidi M, Iezzi G, Petrone G, Piattelli A (2006) Correlation between implant stability quotient and bone-implant contact: a retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans. Clin Implant Dent Relat Res 8(4):218–222

    Article  PubMed  Google Scholar 

  46. Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29(12):1567–1575

    Article  PubMed  Google Scholar 

  47. Li J (1997) Bone-implant interface and remaining tissues on the implant surface after push-out test: an SEM observation. Biomed Mater Eng 7(6):379–385

    PubMed  Google Scholar 

  48. Sakoh J, Wahlmann U, Stender E, Nat R, Al-Nawas B, Wagner W (2006) Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants 21(4):560–566

    PubMed  Google Scholar 

  49. Kay JF, Gilman L, May TC (1991) The tri-spade drill for endosseous dental implant installation. J Oral Implantol 17(4):424–428

    PubMed  Google Scholar 

  50. Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B (2011) Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res 13(1):71–78

    Article  PubMed  Google Scholar 

  51. Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK (2006) Imaging characteristics of bone graft materials. Radiographics 26(2):373–388

    Article  PubMed  Google Scholar 

  52. Hultin M, Davidson T, Gynther G, Helgesson G, Jemt T, Lekholm U et al (2012) Oral rehabilitation of tooth loss: a systematic review of quantitative studies of OHRQoL. Int J Prosthodont 25(6):543–552

    PubMed  Google Scholar 

  53. Amorim MA, Takayama L, Jorgetti V, Pereira RM (2006) Comparative study of axial and femoral bone mineral density and parameters of mandibular bone quality in patients receiving dental implants. OsteoporosInt 17(10):1494–1500

    Article  Google Scholar 

  54. Esposito M, Hirsch JM, Lekholm U, Thomsen P (1998) Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 106(3):721–764

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Scherer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, U., Stoetzer, M., Ruecker, M. et al. Template-guided vs. non-guided drilling in site preparation of dental implants. Clin Oral Invest 19, 1339–1346 (2015). https://doi.org/10.1007/s00784-014-1346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1346-7

Keywords

Navigation