Skip to main content

Advertisement

Log in

DNA methylation of PAX1 as a biomarker for oral squamous cell carcinoma

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

DNA methylation has been shown to be a promising cancer biomarker. The aim of this study was to evaluate DNA methylation of three transcription factors, sex-determining region Y-box 1 (SOX1), paired box gene 1 (PAX1), and zinc-finger 582 (ZNF582), in detecting oral squamous cell carcinoma (OSCC).

Materials and methods

A case–control study was conducted at Taipei Medical University Hospital in Taiwan with 31 cases of various oral cavity squamous cell carcinomas and 40 controls. Questionnaire data assessing environmental exposure, such as alcohol consumption, cigarette smoking, and betel nut chewing, were obtained from each participant. DNA from oral swabs were analyzed for methylation using quantitative methylation polymerase chain reaction with TaqMan probes. Methylation status was determined using a methylation index.

Results

Methylation levels of SOX1, PAX1, and ZNF582 were significantly higher in cancer patients (p = 0.02, p = 0.02, and p = 0.03, respectively). Patients with highly methylated SOX1, PAX1, and ZNF582 had an increased cancer risk with odds ratios (ORs) of 16.50 (95 % CI = 2.85–96.65), 60.57 (95 % CI = 5.85–629.94), and 5.07 (95 % CI = 1.08–23.76), respectively. Area under the curve (AUC) values were 0.85, 0.78, and 0.78 for PAX1, SOX1, and ZNF582, respectively. When stratified based on environmental exposure, the AUC of PAX1 methylation (PAX1 m) was 0.94 in environmental exposure-naïve subjects and 0.85 for SOX1 methylation in subjects who chewed betel nut. In general, the sensitivity and specificity of PAX1 m were 87 and 80 % for OSCC detection. The sensitivity of PAX1 m in subjects who chewed betel nut was 83 %, with a specificity of 75 %.

Conclusions

Testing PAX1 DNA methylation using oral swabs is a promising method for oral cancer detection. Combined assessments regarding betel nut consumption and DNA methylation can improve OSCC screening.

Clinical relevance

The double E (environmental and epigenetic) assessment is a potential strategy in OSCC screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45:309–316

    Article  PubMed  Google Scholar 

  2. Petersen PE (2009) Oral cancer prevention and control—the approach of the World Health Organization. Oral Oncol 45:454–460

    Article  PubMed  Google Scholar 

  3. Petersen PE, Kwan S (2011) Equity, social determinants and public health programmes—the case of oral health. Community Dent Oral Epidemiol 39:481–487

    Article  PubMed  Google Scholar 

  4. Jeng JH, Chang MC, Hahn LJ (2001) Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol 37:477–492

    Article  PubMed  Google Scholar 

  5. Department of Health ROC (2010) Bureau of Health Promotion Annual Report. Department of Health, ROC. Department of Health, Executive Yuan, Taipei

    Google Scholar 

  6. Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schwartz AG, Prysak GM, Bock CH, Cote ML (2006) The molecular epidemiology of lung cancer. Carcinogenesis 28:507–518

    Article  PubMed  Google Scholar 

  8. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692–702

    Article  PubMed  Google Scholar 

  9. Lai HC, Lin YW, Huang THM, Yan P, Huang RL, Wang HC, Liu J, Chan MWY, Chu TY, Sun CA, Chang CC, Yu MH (2008) Identification of novel DNA methylation markers in cervical cancer. Int J Cancer 123:161–167

    Article  PubMed  Google Scholar 

  10. Lai HC, Lin YW, Huang RL, Chung MT, Wang HC, Liao YP, Su PH, Liu YL, Yu MH (2010) Quantitative DNA methylation analysis detects cervical intraepithelial neoplasms type 3 and worse. Cancer 116:4266–4274

    Article  PubMed  Google Scholar 

  11. Kaur J, Demokan S, Tripathi SC, Macha MA, Begum S, Califano JA, Ralhan R (2010) Promoter hypermethylation in indian primary oral squamous cell carcinoma. Int J Cancer 127:2367–2373

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nagata S, Hamada T, Yamada N, Yokoyama S, Kitamoto S, Kanmura Y, Nomura M, Kamikawa Y, Yonezawa S, Sugihara K (2012) Aberrant DNA methylation of tumor-related genes in oral rinse. Cancer 118:4298–4308

    Article  PubMed  Google Scholar 

  13. Pattani KM, Zhang Z, Demokan S, Glazer C, Loyo M, Goodman S, Sidransky D, Bermudez F, Jean-Charles G, McCaffrey T, Padhya T, Phelan J, Spivakovsky S, Bowne HY, Goldberg JD, Rolnitzky L, Robbins M, Kerr AR, Sirois D, Califano JA (2010) Endothelin receptor type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy. Cancer Prev Res 3:1093–1103

    Article  Google Scholar 

  14. Phillips JM, Goodman JI (2009) Inhalation of cigarette smoke induces regions of altered DNA methylation (RAMs) in SENCAR mouse lung. Toxicology 260:7–15

    Article  PubMed  Google Scholar 

  15. Syrjanen S, Lodi G, von Bultzingslowen I, Aliko A, Arduino P, Campisi G, Challacombe S, Ficarra G, Flaitz C, Zhou HM, Maeda H, Miller C, Jontell M (2011) Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Diseases 17:58–72

    Article  PubMed  Google Scholar 

  16. Nair S, Pillai MR (2005) Human papillomavirus and disease mechanisms: relevance to oral and cervical cancers. Oral Dis 11:350–359

    Article  PubMed  Google Scholar 

  17. Molinolo AA, Marsh C, El DM, Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY, Gutkind JS (2012) mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res 18:2558–2568

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zushi Y, Narisawa-Saito M, Noguchi K, Yoshimatsu Y, Yugawa T, Egawa N, Fujita M, Urade M, Kiyono T (2011) An in vitro multistep carcinogenesis model for both HPV-positive and -negative human oral squamous cell carcinomas. Am J Cancer Res 1:869–881

    PubMed Central  PubMed  Google Scholar 

  19. Huang RL, Chang CC, Su PH, Chen YC, Liao YP, Wang HC, Yo YT, Chao TK, Huang HC, Lin CY, Chu TY, Lai HC (2012) Methylomic analysis identifies frequent DNA methylation of Zinc Finger Protein 582 (ZNF582) in cervical neoplasms. PLoS One 7:e41060

    Article  PubMed Central  PubMed  Google Scholar 

  20. Angadi PV, Savitha JK, Rao SS, Sivaranjini Y (2012) Oral field cancerization: current evidence and future perspectives. Oral Maxillofac Surg 16:171–180

    Article  PubMed  Google Scholar 

  21. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32

    Article  PubMed Central  PubMed  Google Scholar 

  22. Reesink-Peters N, Wisman GB, Jeronimo C, Tokumaru CY, Cohen Y, Dong SM, Klip HG, Buikema HJ, Suurmeijer AJ, Hollema H, Boezen HM, Sidransky D, van der Zee AG (2004) Detecting cervical cancer by quantitative promoter hypermethylation assay on cervical scrapings: a feasibility study. Mol Cancer Res 2:289–295

    PubMed  Google Scholar 

  23. Perkins NJ, Schisterman EF (2006) The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 163:670–675

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sankaranarayanan R, Mathew B, Jacob BJ, Thomas G, Somanathan T, Pisani P, Pandey M, Ramadas K, Najeeb K, Abraham E (2000) Early findings from a community-based, cluster-randomized, controlled oral cancer screening trial in Kerala, India. The Trivandrum Oral Cancer Screening Study Group. Cancer 88:664–673

    Article  PubMed  Google Scholar 

  25. Lingen MW, Kalmar JR, Karrison T, Speight PM (2008) Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol 44:10–22

    Article  PubMed Central  PubMed  Google Scholar 

  26. Awan K, Yang Y, Morgan P, Warnakulasuriya S (2012) Utility of toluidine blue as a diagnostic adjunct in the detection of potentially malignant disorders of the oral cavity—a clinical and histological assessment. Oral Dis 18:728–733

    Article  PubMed  Google Scholar 

  27. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer 6:963–968

    Article  PubMed  Google Scholar 

  28. Giovannucci E, Ogino S (2005) DNA methylation, field effects, and colorectal cancer. J Natl Cancer Inst 97:1317–1319

    Article  PubMed  Google Scholar 

  29. Wang KH, Liu HW, Lin SR, Ding DC, Chu TY (2009) Field methylation silencing of the protocadherin 10 gene in cervical carcinogenesis as a potential specific diagnostic test from cervical scrapings. Cancer Sci 100:2175–2180

    Article  PubMed  Google Scholar 

  30. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danenberg KD, Danenberg PV, Laird PW, Skinner KA (2000) Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res 60:5021–5026

    PubMed  Google Scholar 

  31. Lee YC, Wang HP, Wang CP, Ko JY, Lee JM, Chiu HM, Lin JT, Yamashita S, Oka D, Watanabe N, Matsuda Y, Ushijima T, Wu MS (2011) Revisit of field cancerization in squamous cell carcinoma of upper aerodigestive tract: better risk assessment with epigenetic markers. Cancer Prev Res 4:1982–1992

    Article  Google Scholar 

  32. Kiefer JC (2007) Back to basics: Sox genes. Dev Dyn 236:2356–2366

    Article  PubMed  Google Scholar 

  33. Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA (2007) PAX genes: roles in development, pathophysiology, and cancer. Biochem Pharmacol 73:1–14

    Article  PubMed  Google Scholar 

  34. Apostolidou S, Hadwin R, Burnell M, Jones A, Baff D, Pyndiah N, Mould T, Jacobs IJ, Beddows S, Kocjan G, Widschwendter M (2009) DNA methylation analysis in liquid-based cytology for cervical cancer screening. Int J Cancer 125:2995–3002

    Article  PubMed  Google Scholar 

  35. Su HY, Lai HC, Lin YW, Chou YC, Liu CY, Yu MH (2009) An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int J Cancer 124:387–393

    Article  PubMed  Google Scholar 

  36. Chun M, Yan MD, Shih YL, Yu PN, Kuo CC, Lin WC, Li HJ, Lin YW (2012) SOX1 functions as a tumor suppressor through antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatologyimpress

  37. Mathews LA, Hurt EM, Zhang X, Farrar WL (2010) Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells. Mol Cancer 9:267–283

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lim EH, Ng SL, Li JL, Chang AR, Ng J, Ilancheran A, Low J, Quek SC, Tay EH (2010) Cervical dysplasia: assessing methylation status (Methylight) of CCNA1, DAPK1, HS3ST2, PAX1 and TFPI2 to improve diagnostic accuracy. Gynecol Oncol 119:225–231

    Article  PubMed  Google Scholar 

  39. Huang TH, Lai HC, Liu HW, Lin CJ, Wang KH, Ding DC, Chu TY (2010) Quantitative analysis of methylation status of the PAX1 gene for detection of cervical cancer. Int J Gynecol Cancer 20:513–519

    Article  PubMed  Google Scholar 

  40. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gasche JA, Hoffmann J, Boland CR, Goel A (2011) Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int J Cancer 129:1053–1063

    Article  PubMed Central  PubMed  Google Scholar 

  42. IARC. (2004) Betel-quid and areca-nut chewing and some areca-nut-derived nitrosamines. In: IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon, Franch, pp 1–333

  43. Chang MC, Chiang CP, Lin CL, Lee JJ, Hahn LJ, Jeng JH (2005) Cell-mediated immunity and head and neck cancer: with special emphasis on betel quid chewing habit. Oral Oncol 41:757–775

    Article  PubMed  Google Scholar 

  44. Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S (2006) Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 42:561–568

    Article  PubMed  Google Scholar 

  45. Lin PC, Chang WH, Chen YH, Lee CC, Lin YH, Chang JG (2011) Cytotoxic effects produced by arecoline correlated to epigenetic regulation in human K-562 cells. J Toxicol Environ Health A 74:737–745

    Article  PubMed  Google Scholar 

  46. Sundqvist K, Liu Y, Nair J, Bartsch H, Arvidson K, Grafstrom RC (1989) Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res 49:5294–5298

    PubMed  Google Scholar 

  47. Rao AR, Das P (1989) Evaluation of the carcinogenicity of different preparations of areca nut in mice. Int J Cancer 43:728–732

    Article  PubMed  Google Scholar 

  48. Suri K, Goldman HM, Wells H (1971) Carcinogenic effect of a dimethyl sulphoxide extract of betel nut on the mucosa of the hamster buccal pouch. Nature 230:383–384

    Article  PubMed  Google Scholar 

  49. Chang LY, Wan HC, Lai YL, Kuo YF, Liu TY, Chen YT, Hung SL (2009) Areca nut extracts increased expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-1β, interleukin-6 and interleukin-8, in peripheral blood mononuclear cells. J of Periodontal Res 44:175–183

    Article  Google Scholar 

  50. Shiu MN, Chen TH, Chang SH, Hahn LJ (2000) Risk factors for leukoplakia and malignant transformation to oral carcinoma: a leukoplakia cohort in Taiwan. Br J Cancer 82:1871–1874

    Article  PubMed Central  PubMed  Google Scholar 

  51. Shiu MN, Chen TH (2004) Impact of betel quid, tobacco and alcohol on three-stage disease natural history of oral leukoplakia and cancer: implication for prevention of oral cancer. Eur J Cancer Prev 13:39–45

    Article  PubMed  Google Scholar 

  52. Brailo V, Vucicevic-Boras V, Lukac J, Biocina-Lukenda D, Zilic-Alajbeg I, Milenovic A, Balija M (2012) Salivary and serum interleukin 1 beta, interleukin 6 and tumor necrosis factor alpha in patients with leukoplakia and oral cancer. Medicina Oral Patologia Oral y Cirugia Bucal 17:E10–E15

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grant TMU99-AE1-06 from Taipei Medical University; grant no. NSC 100-2314-B-038-042 from the National Science Council, Executive Yuan, Taiwan; and the Teh-Tzer Study Group for Human Medical Research Foundation.

Conflict of interest

The authors received no financial support and declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Cheng Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YK., Peng, BY., Wu, CY. et al. DNA methylation of PAX1 as a biomarker for oral squamous cell carcinoma. Clin Oral Invest 18, 801–808 (2014). https://doi.org/10.1007/s00784-013-1048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1048-6

Keywords

Navigation