Skip to main content

Advertisement

Log in

Orthodontic bracket debonding: risk of enamel fracture

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Until now, it is not clear if various procedures of bracket debonding differ with regard to their risk of enamel fracture. Therefore, the objective of the present study was to compare these procedures biomechanically for assessing the risk of complications.

Materials and methods

An anisotropic finite element method (FEM) model of the mandibular bone including periodontal ligament, enamel, dentin, and an orthodontic bracket was created. The morphology based on the CT data of an anatomical specimen. Typical loading conditions were defined for each method of bracket debonding (compression, shearing off, twisting off). Shortly before the adhesive’s break, the induced stress in enamel, periodontal ligament, and in the alveolar bone was measured. The statistical analysis of the obtained values was performed in SPSS 19.0.

Results

Relatively high stresses occurred in the enamel using frontal torque (max. 44.18 MPa). With shearing off, the stresses were also high (max. 41.96 MPa), and additionally high loads occurred on the alveolar bone as well (max. 11.79 MPa). Moderate maximum values in enamel and alveolar bone appeared during the compression of the bracket wings (max. 37.12 MPa) and during debonding by lateral torque (max. 35.18 MPa).

Conclusions

The present simulation results indicate that the risk of enamel fracture may depend on the individual debonding procedure. Further clinical trials are necessary to confirm that.

Clinical relevance

For patients with prior periodontal disease or loosened teeth, a debonding procedure by compression of the bracket wings is recommended, since here the load for the periodontal structures of the tooth is lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bishara SE, Khowassah MA, Oesterle LJ (1975) Effect of humidity and temperature changes on orthodontic direct-bonding adhesive systems. J Dent Res 54:751–758

    Article  PubMed  Google Scholar 

  2. Buonocore MG, Matsui A, Gwinnett AJ (1968) Penetration of resin dental materials into enamel surfaces with reference to bonding. Arch Oral Biol 13:61–70

    Article  PubMed  Google Scholar 

  3. Faust JB, Grego GN, Fan PL, Powers JM (1978) Penetration coefficient, tensile strength, and bond strength of thirteen direct bonding orthodontic cements. Am J Orthod 73:512–525

    Article  PubMed  Google Scholar 

  4. Knoll M, Gwinnett AJ, Wolff MS (1986) Shear strength of brackets bonded to anterior and posterior teeth. Am J Orthod 89:476–479

    Article  PubMed  Google Scholar 

  5. Lin L, Huang SF, Tsai HC, Chang WJ (2011) Finite element submodeling analyses of damage to enamel at the incisor enamel/adhesive interface upon de-bonding for different orthodontic bracket bases. J Biomech 44:134–142

    Article  PubMed  Google Scholar 

  6. Meng CL, Li CH, Wang WN (1998) Bond strength with APF applied after acid etching. Am J Orthod Dentofacial Orthop 114:510–513

    Article  PubMed  Google Scholar 

  7. Sorel O, Alam R, Chagneau F, Cathelineau G (2000) Changes in the enamel after in vitro debonding of brackets bonded with a modified glass ionomer cement. Orthod Francaise 71:155–163

    Article  Google Scholar 

  8. Chen CS, Hsu ML, Chang KD, Kuang SH, Chen PT, Gung YW (2008) Failure analysis: enamel fracture after debonding orthodontic brackets. Angle Orthod 78:1071–1077

    Article  PubMed  Google Scholar 

  9. Ryf S, Flury S, Palaniappan S, Lussi A, van Meerbeek B, Zimmerli B (2012) Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur J Orthod 34:25–32

    Article  PubMed  Google Scholar 

  10. Shinya M, Shinya A, Lassila LV, Gomi H, Varrela J, Vallittu PK, Shinya A (2008) Treated enamel surface patterns associated with five orthodontic adhesive systems—surface morphology and shear bond strength. Dent Mat J 27:1–6

    Article  Google Scholar 

  11. Bishara SE, Fehr DE (1997) Ceramic brackets: something old, something new, a review. Semin Orthod 3:178–188

    Article  PubMed  Google Scholar 

  12. Stratmann U, Schaarschmidt K, Wegener H, Ehmer U (1996) The extent of enamel surface fractures. A quantitative comparison of thermally debonded ceramic and mechanically debonded metal brackets by energy dispersive micro- and image-analysis. Eur J Orthod 18:655–62

    PubMed  Google Scholar 

  13. Naini FB, Gill DS (2008) Tooth fracture associated with debonding a metal orthodontic bracket: a case report. World J Orthod 9:e32–36

    PubMed  Google Scholar 

  14. Scougall Vilchis RJ, Yamamoto S, Kitai N, Yamamoto K (2009) Shear bond strength of orthodontic brackets bonded with different self-etching adhesives. Am J Orthod Dentofacial Orthop 136:425–430

    Article  PubMed  Google Scholar 

  15. Ogaard B, Bishara SE, Duschner H (2004) Enamel effects during bonding-debonding and treatment with fixed appliances. In: Graber TM, Eliades T, Athanasiou AE (eds) Risk management in orthodontics: experts guide to malpractice. Quintessence, Chicago, pp 19–46

    Google Scholar 

  16. Odegaard J, Segner D (1988) Shear bond strength of metal brackets compared with a new ceramic bracket. Am J Orthod Dentofacial Orthop 94:201–206

    Article  PubMed  Google Scholar 

  17. Redd TB, Shivapura PK (1991) Debonding ceramic brackets: effects on enamel. J Clin Orthod 99:97–99

    Google Scholar 

  18. Habibi M, Nik TH, Hooshmand T (2007) Comparison of the debonding characteristics of metal and ceramic orthodontic brackets to enamel: an in-vitro study. Am J Orthod Dentofacial Orthop 132:675–679

    Article  PubMed  Google Scholar 

  19. Fischer-Brandies H, Kremers L, Reicheneder C, Kluge G, Hüsler K (1993) Enamel damage depending on the method of bracket removal. J Orofac Orthop 54:64–70

    Google Scholar 

  20. Cattaneo PM, Dalstra M, Melsen B (2005) The finite element method: a tool to study orthodontic tooth movement. J Dent Res 84:428–433

    Article  PubMed  Google Scholar 

  21. Chang YI, Baek SH (2004) Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur J Orthod 26:339–345

    Article  PubMed  Google Scholar 

  22. Kojima Y, Fukui H (2005) Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 127:542–551

    Article  PubMed  Google Scholar 

  23. Motoyoshi M, Yano S, Tsuruoka T, Shimizu N (2005) Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res 16:480–485

    Article  PubMed  Google Scholar 

  24. Suzuki A, Masuda T, Takahashi I, Deguchi T, Suzuki O, Takano-Yamamoto T (2011) Changes in stress distribution of orthodontic miniscrews and surrounding bone evaluated by 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 140:e273–280

    Article  PubMed  Google Scholar 

  25. Woodall N, Tadepalli SC, Qian F, Grosland NM, Marshall SD, Southard TE (2011) Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop 139:e147–152

    Article  PubMed  Google Scholar 

  26. Liu TC, Chang CH, Wong TY, Liu JK (2012) Finite element analysis of miniscrew implants used for orthodontic anchorage. Am J Orthod Dentofacial Orthop 141:468–476

    Article  PubMed  Google Scholar 

  27. Singh S, Mogra S, Shetty VS, Shetty S, Philip P (2012) Three-dimensional finite element analysis of strength, stability and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system. Am J Orthod Dentofacial Orthop 141:327–336

    Article  PubMed  Google Scholar 

  28. Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB (1993) Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol 90:291–306

    Article  PubMed  Google Scholar 

  29. O’Mahony M, Williams JL, Katz JO, Spencer P (2000) Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res 11:415–421

    Article  PubMed  Google Scholar 

  30. O’Mahony M, Williams JL, Spencer P (2001) Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 12:648–657

    Article  PubMed  Google Scholar 

  31. Xu HH, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, Rekow ED (1998) Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 77:472–480

    Article  PubMed  Google Scholar 

  32. Kinney JH, Gladden JR, Marshall GW, Marshall SJ, So JH, Maynard JD (2004) Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J Biomech 37:437–441

    Article  PubMed  Google Scholar 

  33. Rees JS, Jacobsen PH (1997) Elastic modulus of the periodontal ligament. Biomaterials 18:995–999

    Article  PubMed  Google Scholar 

  34. Borschel GH, Kia KF, Kuzon WM, Dennis RG (2003) Mechanical properties of acellular peripheral nerve. J Surg Res 114:133–139

    Article  PubMed  Google Scholar 

  35. Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S (2001) Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma 18:361–367

    Article  PubMed  Google Scholar 

  36. Chen F, Terada K, Handa K (2005) Anchorage effect of various shape palatal osseointegrated implants: a finite element study. Angle Orthod 75:378–385

    PubMed  Google Scholar 

  37. Pickard MB, Dechow P, Rossouw PE, Buschang PH (2010) Effects of miniscrew orientation on implant stability and resistance to failure. Am J Orthod Dentofacial Orthop 137:91–99

    Article  PubMed  Google Scholar 

  38. Lombardo L, Gracco A, Zampini F, Stefanoni F, Mollica F (2010) Optimal palatal configuration for miniscrew applications. Angle Orthod 80:145–152

    Article  PubMed  Google Scholar 

  39. Brosh T, Kaufman A, Balabanovsky A, Vardimon AD (2005) In vivo debonding strength and enamel damage in two orthodontic debonding methods. J Biomech 38:1107–1113

    Article  PubMed  Google Scholar 

  40. Normando TS, Calçada FS, Ursi WJ, Normando D (2010) Patients' report of discomfort and pain during debonding of orthodontic brackets: a comparative study of two methods. World J Orthod 11:e29–34

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Holberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holberg, C., Winterhalder, P., Holberg, N. et al. Orthodontic bracket debonding: risk of enamel fracture. Clin Oral Invest 18, 327–334 (2014). https://doi.org/10.1007/s00784-013-0969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-0969-4

Keywords

Navigation