Skip to main content
Log in

Evaluation of a new optical measuring system for experiments on fractured human mandibles

A biomechanical feasibility study in maxillofacial surgery

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Biomechanical loading on human mandibles was performed and a new optical measurement device was introduced for the quantification of interfragmentary movement in fractured mandibles stabilized with different osteosynthesis systems.

Materials and methods

Comparison tests were performed with monocortical non-locking double plates and bicortical single locking plate. For the experiments on a specialized test bench, 18 ex vivo fractured human cadaveric mandibles were tested. Interfragmentary motion was detected in all three spatial dimensions using the optical measurement device PONTOS®. The movement was investigated over increasing incisal force and one summarized parameter was investigated.

Results

For the maximal tested load of 300 N m, the resultant interfragmentary movements in the two investigated groups were 2.96 ± 1.85° for the fixation with two conventional miniplates (six hole, profile 1.0 mm) and 4.53 ± 2.49° for single bicortically fixed locking plates (four hole, profile 1.5 mm). For both plate systems, we used the 2.0 mm screw system.

Conclusions

The test bench in combination with the new optical device PONTOS® can test the primary stability of osteosynthesis. We offer a solution to the problem of rate of twist of the mandible as well as typical rotational problem in recent measurements. Further, the method can be used for development of new osteosynthesis products.

Clinical relevance

Pseudoarthrosis formation is a common problem based on unsatisfying fixation of the fracture gap. The here presented combination of mechanical tests and numerical simulations can provide support for an improved treatment of fractured mandibles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Champy M, Lodde JP, Schmitt R, Jaeger JH, Muster D (1978) Mandibular osteosynthesis by miniature screwed plates via a buccal approach. J Maxillofac Surg 6(1):14–21

    Article  PubMed  Google Scholar 

  2. Champy M, Wilk A, Schnebelen JM (1975) Die Behandlung der Mandibularfrakturen mittels Osteosynthese ohne intermaxillare Ruhigstellung nach der Technik von F.X. Michelet. Zahn Mund Kieferheilkd Zentralbl 63(4):339–341

    PubMed  Google Scholar 

  3. Gerlach KL, Pape HD (1980) Prinzip und Indikation der Miniplattenosteosynthese. Deutsche zahnarztliche Zeitschrift 35(2):346–348

    PubMed  Google Scholar 

  4. Gerlach KL, Schwarz A (2003) Belastungsmessungen nach der Miniplattenosteosynthese von Unterkieferwinkelfrakturen. Mund Kiefer Gesichtschir 7(4):241–245

    Article  PubMed  Google Scholar 

  5. Burm JS, Hansen JE (2009) The use of microplates for internal fixation of mandibular fractures. Plast Reconstruct Surg 125(5):1485–1492

    Google Scholar 

  6. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584

    Article  PubMed  Google Scholar 

  7. Piffko J, Homann C, Schuon R, Joos U, Meyer U (2003) Experimentelle Untersuchung zur biomechanischen Stabliltat unterscheiedlicher Unterkieferosteosynthesen. Mund Kiefer Gesichtschir 7(1):1–6

    Article  PubMed  Google Scholar 

  8. Goodship AE, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg 67(4):650–655

    Google Scholar 

  9. Wolf S, Janousek A, Pfeil J, Veith W, Haas F, Duda G, Claes L (1998) The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin Biomech (Bristol, Avon) 13(4–5):359–364

    Article  Google Scholar 

  10. Karoglan M, Schutz K, Schieferstein H, Horch HH, Neff A (2006) Development of a static and dynamic simulator for osteosyntheses of the mandible. Technol Health Care 14(4–5):449–455

    PubMed  Google Scholar 

  11. Meyer C, Kahn JL, Lambert A, Boutemy P, Wilk A (2000) Development of a static simulator of the mandible. J Craniomaxillofac Surg 28(5):278–286

    Article  PubMed  Google Scholar 

  12. Rudman RA, Rosenthal SC, Shen C, Ruskin JD, Ifju PG (1997) Photoelastic analysis of miniplate osteosynthesis for mandibular angle fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84(2):129–136

    Article  PubMed  Google Scholar 

  13. Dobele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, Nussler AK, Lucke M, Andermatt D, Koch R et al (2010) The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbecks Arch Surg 395(4):421–428

    Article  PubMed  Google Scholar 

  14. Neff A, Muhlberger G, Karoglan M, Kolk A, Mittelmeier W, Scheruhn D, Horch HH, Kock S, Schieferstein H (2004) Stabilitat der Osteosynthese bei Gelenkwalzenfrakturen in Klinik und biomechanischer Simulation. Mund Kiefer Gesichtschir 8(2):63–74

    Article  PubMed  Google Scholar 

  15. Schieferstein H (2003) Experimentelle Analyse des menschlichen Kausystems. Technische Universität, München

    Google Scholar 

  16. Koolstra JH, van Eijden TM (1992) Application and validation of a three-dimensional mathematical model of the human masticatory system in vivo. J Biomech 25(2):175–187

    Article  PubMed  Google Scholar 

  17. Koolstra JH, van Eijden TM, Weijs WA, Naeije M (1988) A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech 21(7):563–576

    Article  PubMed  Google Scholar 

  18. Pruim GJ, de Jongh HJ, ten Bosch JJ (1980) Forces acting on the mandible during bilateral static bite at different bite force levels. J Biomech 13(9):755–763

    Article  PubMed  Google Scholar 

  19. Waltimo A, Kononen M (1993) A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand J Dent Res 101(3):171–175

    PubMed  Google Scholar 

  20. Baragar FA, Osborn JW (1984) A model relating patterns of human jaw movement to biomechanical constraints. J Biomech 17(10):757–767

    Article  PubMed  Google Scholar 

  21. Nickel JC, Iwasaki LR, Walker RD, McLachlan KR, McCall WD Jr (2003) Human masticatory muscle forces during static biting. J Dent Res 82(3):212–217

    Article  PubMed  Google Scholar 

  22. Osborn JW, Baragar FA (1985) Predicted pattern of human muscle activity during clenching derived from a computer assisted model: symmetric vertical bite forces. J Biomech 18(8):599–612

    Article  PubMed  Google Scholar 

  23. Koolstra JH (2002) Dynamics of the human masticatory system. Crit Rev Oral Biol Med 13(4):366–376

    Article  PubMed  Google Scholar 

  24. Hölzle F, Franz EP, Lehmbrock J, Weihe S, Teistra C, Deppe H, Wolff KD (2009) Thiel embalming technique: a valuable method for teaching oral surgery and implantology. Clin Implant Dent Relat Res

  25. Franz Härle MC, Terry BC (2009) Atlas of craniomaxillofacial osteosynthesis: microplates, miniplates, and screws, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  26. Shetty V, McBrearty D, Fourney M, Caputo AA (1995) Fracture line stability as a function of the internal fixation system: an in vitro comparison using a mandibular angle fracture model. J Oral Maxillofac Surg 53(7):791–801, discussion 801-792

    Article  PubMed  Google Scholar 

  27. Joos U, Piffko J, Meyer U (2001) Neue Aspekte in der Versorgung von Unterkieferfrakturen. Mund Kiefer Gesichtschir 5(1):2–16

    Article  PubMed  Google Scholar 

  28. De Marco TJ, Paine S (1974) Mandibular dimensional change. J Prosthet Dent 31(5):482–485

    Article  PubMed  Google Scholar 

  29. Fischman B (1990) The rotational aspect of mandibular flexure. J Prosthet Dent 64(4):483–485

    Article  PubMed  Google Scholar 

  30. Steinhauser E, Diehl P, Hadaller M, Schauwecker J, Busch R, Gradinger R, Mittelmeier W (2006) Biomechanical investigation of the effect of high hydrostatic pressure treatment on the mechanical properties of human bone. J Biomed Mater Res 76(1):130–135

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank the International Bone Research Association (IBRA), Basel, Switzerland, for making these studies possible by providing essential support with a research grant.

Conflict of interest

On behalf of all authors of this manuscript, we certify that there is no actual or potential conflict of interest in relation of this article. Additionally, we declare that there exists no financial or personal relationship with other people or organizations that could inappropriately influence this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, T., Raith, S., Eichhorn, S. et al. Evaluation of a new optical measuring system for experiments on fractured human mandibles. Clin Oral Invest 16, 1535–1542 (2012). https://doi.org/10.1007/s00784-011-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-011-0659-z

Keywords

Navigation