Skip to main content

Advertisement

Log in

Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of this randomized double-blind, clinical trial was to compare the use of enamel matrix derivative (EMD) and demineralised freeze-dried bone allografts (DFDBA) with DFDBA alone for the treatment of human periodontal intrabony defects at 12 months post-surgery. Fifty-six intrabony osseous defects in 56 periodontis patients were randomly assigned to the test group (DFDBA + EMD) or the control group (DFDBA) for periodontal treatment. Clinical and radiographic measurements were made at the baseline and after 12 months. Compared to baseline, the 12-month results indicated that both treatment modalities resulted in significant changes in all clinical parameters (gingival index, bleeding on probing, probing depth (PD), clinical attachment level (CAL), gingival recession; P < 0.05) and radiographic parameters (hard tissue fill (HTF) and bone depth reduction; P < 0.05). Furthermore, statistically significant differences were found in the test group compared to the control group in PD reduction (5.0 mm vs. 4.0 mm; P < 0.05), CAL gain (4.0 mm vs. 3.25 mm), and HTF (4.0 mm vs. 3.5 mm; P < 0.05). In the test group, 25% of sites gained >4 mm of CAL, while in the control group, 7.1% of sites gained >4 mm of CAL. Both treatments showed a good soft and hard periodontal tissue response. At 12 months post-surgery, the combined use of DFDBA and EMD seemed to produce a statistically significant improvement of PD reduction, CAL gain, and HTF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. MTF, Musculoskeletal Transplant Foundation, Edison, NJ.

  2. Emdogain, Straumann Biologics Division, Waltham, MA; previously, Biora, Inc., Malmo, Sweden

  3. UNC-15 periodontal probe, Hu-Friedy, Chicago, IL.

  4. Trophy Radiologie, 708 G, 70 kV, Vincennes, France.

  5. Kodak Ultraspeed DF58, Eastman Kodak, Rochester NY.

  6. Prefgel, Straumann Biologic Division

  7. MONOMYD MM-2620 Butterfly Italia, Cavenago B.za (MI), Italy, www.butterflyitalia.com

  8. CICLADOL Rottapharm SpA, Monza, Italy, www.rottapharm.it

  9. Corsodyl, GlaxoSmithKline

References

  1. American Academy of Periodontology (2001) Glossary of periodontal terms, 4th edn. American Academy of Periodontology, Chicago, p 44

    Google Scholar 

  2. American Academy of Periodontology (2005) Periodontal regeneration (position paper). J Periodontol 76:1601–1622

    Article  Google Scholar 

  3. Stahl SS, Froum S, Kushner L (1983) Healing responses of human intraosseous lesions following use of debridement, grafting and citric acid root treatment. II. Clinical and histologic observations: one year postsurgery. J Periodontol 54:325–338

    PubMed  Google Scholar 

  4. Dragoo MR, Sullivan HC (1973) A clinical and histologic evaluation of autologous bone grafts in humans. II. External root resorption. J Periodontol 44:614–625

    Article  PubMed  Google Scholar 

  5. Hiatt W, Schallhorn R, Aaronian A (1978) The induction of new bone and cementum formation. IV. Microscopic examination of the periodontium following human bone and marrow allograft, autograft and non-graft periodontal regenerative procedures. J Periodontol 49:495–512

    PubMed  Google Scholar 

  6. Shirmohammadi A, Chitsazi MT, Lafzi A (2009) A clinical comparison of autogenous bone graft with and without autogenous periodontal ligament graft in the treatment of periodontal intrabony defects. Clin Oral Investig 13:279–286

    Article  PubMed  Google Scholar 

  7. Rummelhart JM, Mellonig JT, Gray JL, Towle HJ (1989) A comparison of freeze-dried bone allograft and demineralized freeze-dried bone allograft in human periodontal osseous defects. J Periodontol 60:655–663

    PubMed  Google Scholar 

  8. Stavropoulos A, Karring (2005) Five-year results of guided tissue regeneration in combination with deproteinized bovine bone (Bio-Oss) in the treatment of intrabony periodontal defects: a case series report. Clin Oral Invest 9:271–277

    Article  Google Scholar 

  9. Hanna R, Trejo PM, Weltman RL (2004) Treatment of intrabony defects with bovine-derived xenograft alone and in combination with platelet-rich plasma: a randomized clinical trial. J Periodontol 75:1668–1677

    Article  PubMed  Google Scholar 

  10. Windisch P, Szendroi-Kiss D, Horváth A, Suba Z, Gera I, Sculean A (2008) Reconstructive periodontal therapy with simultaneous ridge augmentation. A clinical and histological case series report. Clin Oral Investig 12:257–264

    Article  PubMed  Google Scholar 

  11. Sculean A, Stavropoulos A, Windisch P, Karring T, Gera I (2004) Healing of human intrabony defects following regenerative periodontal therapy with a bovine-derived xenograft and guided tissue regeneration. Clin Oral Investig 8:70–74

    Article  PubMed  Google Scholar 

  12. Heinz B, Kasaj A, Teich M, Jepsen S (2009) Clinical effects of nanocrystalline hydroxyapatite paste in the treatment of intrabony periodontal defects: a randomized controlled clinical study. Clin Oral Investig. doi:10.1007/s00784-009-0325-x

  13. Stratul SI, Schwarz F, Becker J, Willershausen B, Sculean A (2006) Healing of intrabony defects following treatment with an oily calcium hydroxide suspension (osteoinductal). A controlled clinical study. Clin Oral Invest 10:55–60

    Article  Google Scholar 

  14. De Leonardis D, Garg AK, Pedrazzoli V, Pecora GE (1999) Clinical evaluation of the treatment of class ii furcation involvements with bioabsorbable barriers alone or associated with demineralized freeze-dried bone allografts. J Periodontol 70:8–12

    Article  PubMed  Google Scholar 

  15. Piemontese M, Aspriello SD, Rubini C, Ferrante L, Procaccini M (2008) Treatment of periodontal intrabony defects with demineralized freeze-dried bone allograft in combination with platelet-rich plasma: a comparative clinical trial. J Periodontol 79:802–810

    Article  PubMed  Google Scholar 

  16. Ilgenli T, Dündar N, Kal BI (2007) Demineralized freeze-dried bone allograft and platelet-rich plasma vs. platelet-rich plasma alone in infrabony defects: a clinical and radiographic evaluation. Clin Oral Investig 11:51–59

    Article  PubMed  Google Scholar 

  17. Venezia E, Goldstein M, Boyan BD, Schwartz Z (2004) The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis. Crit Rev Oral Biol Med 15:382–402

    Article  PubMed  Google Scholar 

  18. Döri F, Arweiler N, Gera I, Sculean A (2005) Clinical evaluation of an enamel matrix protein derivative combined with either a natural bone mineral or beta-tricalcium phosphate. J Periodontol 76:2236–2243

    Article  PubMed  Google Scholar 

  19. Chitsazi MT, Mostofi Zadeh Farahani R, Pourabbas M, Bahaeddin N (2007) Efficacy of open flap debridement with and without enamel matrix derivatives in the treatment of mandibular degree II furcation involvement. Clin Oral Investig 11:385–389

    Article  PubMed  Google Scholar 

  20. Sculean A, Donos N, Brecx M, Karring T, Reich E (2000) Healing of fenestration-type defects following treatment with guided tissue regeneration or enamel matrix proteins. An experimental study in monkeys. Clin Oral Investig 4:50–56

    Article  PubMed  Google Scholar 

  21. Sculean A, Windisch P, Keglevich T, Fabi B, Lundgren E, Lyngstadaas PS (2002) Presence of an enamel matrix protein derivative on human teeth following periodontal surgery. Clin Oral Investig 6:183–187, Epub 2002 Aug 13

    Article  PubMed  Google Scholar 

  22. Sculean A, Windisch P, Keglevich T et al (2003) Clinical and histological evaluation of human intrabony defects treated with enamel matrix protein derivative combined with a bovine-derived xenograft. Int J Periodontics Restor Dent 23:47–55

    Google Scholar 

  23. Boyan BD, Weesner TC, Lohmann CH et al (2000) Porcine fetal enamel matrix derivative enhances bone formation induced by demineralised freeze dried bone allograft in vivo. J Periodontol 71:1278–1286

    Article  PubMed  Google Scholar 

  24. Rosen PS, Reynolds MA (2002) A retrospective case series comparing the use of demineralized freeze-dried bone allograft and freeze-dried bone allograft combined with enamel matrix derivative for the treatment of advanced osseous lesions. J Periodontol 73:942–949

    Article  PubMed  Google Scholar 

  25. Gurinsky BS, Mills MP, Mellonig JT (2004) Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol 75:1309–1318

    Article  PubMed  Google Scholar 

  26. Harris RJ, Harris LE, Harris CR, Harris AJ (2007) Clinical evaluation of a combined regenerative technique with enamel matrix derivative, bone grafts, and guided tissue regeneration. Int J Periodontics Restorative Dent 27:171–179

    PubMed  Google Scholar 

  27. Sugai K, Sato S, Suzuki K, Ito K (2008) Intentional reimplantation of a tooth with severe periodontal involvement using enamel matrix derivative in combination with guided tissue regeneration and bone grafting: a case report. Int J Periodontics Restorative Dent 28:89–94

    PubMed  Google Scholar 

  28. Harrel SK, TGJr W, Nunn ME (2005) Prospective assessment of the use of enamel matrix proteins with minimally invasive surgery. J Periodontol 76:380–384

    Article  PubMed  Google Scholar 

  29. Hoidal MJ, Grimard BA, Mills MP, Schoolfield JD, Mellonig JT, Mealey BL (2008) Clinical evaluation of demineralised freeze-dried bone allograft with and without enamel matrix derivative for the treatment of periodontal osseous defects in humans. J Periodontol 79:2273–2280

    Article  PubMed  Google Scholar 

  30. Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4:1–6

    Article  PubMed  Google Scholar 

  31. O’Leary TJ, Drake RB, Naylor JE (1972) The plaque control record. J Periodontol 43:38

    Article  PubMed  Google Scholar 

  32. Gamal AY, Mailhot JM (2003) The effects of EDTA gel conditioning exposure time on periodontitis-affected human root surfaces: surface topography and PDL cell adhesion. J Int Acad Periodontol 5:11–22

    PubMed  Google Scholar 

  33. Putzer P, Hoy L, Günay H (2008) Highly concentrated EDTA gel improves cleaning efficiency of root canal preparation in vitro. Clin Oral Investig 12:319–324

    Article  PubMed  Google Scholar 

  34. Sauro S, Mannocci F, Toledano M, Osorio R, Pashley DH, Watson TF (2009) EDTA or H3PO4/NaOCl dentine treatments may increase hybrid layers’ resistance to degradation: a microtensile bond strength and confocal-micropermeability study. J Dent 37:279–288, Epub 2009 Jan 19

    Article  PubMed  Google Scholar 

  35. Bender SA, Rogalski JB, Mills MP, Arnold RM, Cochran DL, Mellonig JT (2005) Evaluation of demineralized bone matrix paste and putty in periodontal intraosseous defects. J Periodontol 76:768–777

    Article  PubMed  Google Scholar 

  36. Parashis A, Andronikaki-Faldami TK (2004) Clinical and radiographic comparison of three regenerative procedures in the treatment of intrabony defects. Int J Periodontics Restorative Dent 24:81–90

    PubMed  Google Scholar 

  37. Quintero G, Mellonig JT, Qambill VM, Pelleu QB (1982) A six-month clinical evaluation of decalcified freeze-dried bone allografts in periodontal osseous defects. J Periodontol 53:726–730

    PubMed  Google Scholar 

  38. Mellonig JT (1984) Decalcified freeze-dried bone allograft as an implant material in human periodontal defects. Int J Periodontics Restorative Dent 4:40–55

    PubMed  Google Scholar 

  39. Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35:87–105

    Article  PubMed  Google Scholar 

  40. Lekovic V, Camargo PM, Weinlaender M, Nedic M, Aleksic Z, Kennedy EB (2000) A comparison between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans. J Periodontol 71:1110–1116

    Article  PubMed  Google Scholar 

  41. Zucchelli G, Amore C, Montebugnoli L, De Sanctis M (2003) Enamel matrix proteins and bovine porous bone mineral in the treatment of intrabony defects: a comparative controlled clinical trial. J Periodontol 74:1725–1735

    Article  PubMed  Google Scholar 

  42. Velasquez-Plata D, Scheyer ET, Mellonig JT (2002) Clinical comparison of an enamel matrix derivative used alone or in combination with a bovine-derived xenograft for the treatment of periodontal osseous defects in humans. J Periodontol 73:433–440, Erratum in: J Periodontol 73:684

    Article  PubMed  Google Scholar 

  43. Scheyer ET, Velasquez-Plata D, Brunsvold MA, Lasho DJ, Mellonig JT (2002) A clinical comparison of a bovine-derived xenograft used alone and in combination with enamel matrix derivative for the treatment of periodontal osseous defects in humans. J Periodontol 73:423–432

    Article  PubMed  Google Scholar 

  44. Schwartz Z, Carnes DL Jr, Pulliam R et al (2000) Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol 71:1287–1296

    Article  PubMed  Google Scholar 

  45. Kawana F, Sawae Y, Sasaki T et al (2001) Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur. Anat Rec 264:438–446

    Article  PubMed  Google Scholar 

  46. Yoneda S, Itoh D, Kuroda S et al (2003) The effects of enamel matrix derivative (EMD) on osteoblastic cells in culture and bone regeneration in a rat skull defect. J Periodontal Res 38:333–342

    Article  PubMed  Google Scholar 

  47. Donos N, Kostopoulos L, Tonetti M, Karring T, Lang NP (2006) The effect of enamel matrix proteins and deproteinised bovine bone mineral on heterotopic bone formation. Clin Oral Implants Res 17:434–438

    Article  PubMed  Google Scholar 

  48. Intini G, Andreana S, Buhite RJ, Bobek LA (2008) A comparative analysis of bone formation induced by human demineralised freeze-dried bone allograft and enamel matrix derivative in rat calvaria critical-size defects. J Periodontol 79:1217–1224

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Piemontese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspriello, S.D., Ferrante, L., Rubini, C. et al. Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery. Clin Oral Invest 15, 225–232 (2011). https://doi.org/10.1007/s00784-009-0369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-009-0369-y

Keywords

Navigation