Skip to main content

Advertisement

Log in

Three-dimensional localization of impacted teeth using magnetic resonance imaging

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Impacted teeth remain embedded in the jawbone beyond the normal eruption time with completed root growth. They can often get infected or damage neighboring teeth. Information about the three-dimensional position of impacted teeth is invaluable in orthodontic diagnosis and treatment planning. The purpose of this prospective study was to assess the feasibility of using magnetic resonance imaging (MRI) for the three-dimensional localization of impacted teeth in children and adults. The study included 39 patients from the pediatric age group with different tooth impactions and seven adults with impacted wisdom teeth. MRI yielded a clear separation between impacted teeth and the surrounding tissue, and the position and angulation of impacted teeth in all three spatial dimensions could be assessed. Compared to conventional radiography, dental MRI provides the advantage of full volumetric morphology accompanied by complete elimination of ionizing radiation, which is particularly relevant for repeated examinations of the pediatric group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shaw WC (1993) Orthodontics and occlusal management. Wright, Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Wheeler RC (1974) Dental anatomy, physiology and occlusion. Saunders, Philadelphia

    Google Scholar 

  3. Sawamura T, Minowa K, Nakamura M (2003) Impacted teeth in the maxilla: usefulness of 3D dental-CT for preoperative evaluation. Eur J Radiol 47:221–226

    Article  PubMed  Google Scholar 

  4. de Moraes Ramos FM, de Barros Quirino Martins MG, de Almeida SM, Novaes PD, Haiter-Neto F (2006) Multiple radiographic projections in diagnosis of uncommon unerupted tooth. Dentomaxillofac Radiol 35(1):65–66

    Article  PubMed  Google Scholar 

  5. Haris PS, Balan A (2007) Importance of localization of impacted teeth. Dentomaxillofac Radiol 36(6):372–373

    Article  PubMed  Google Scholar 

  6. Yamamoto K, Hayakawa Y, Kousuge Y et al (2003) Diagnostic value of tuned-aperture computed tomography versus conventional dentoalveolar imaging in assessment of impacted teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95(1):109–118

    Article  PubMed  Google Scholar 

  7. Preda L, La Fianza A, Di Maggio EM et al (1997) The use of spiral computed tomography in the localization of impacted maxillary canines. Dentomaxillofac Radiol 26(4):236–241

    Article  PubMed  Google Scholar 

  8. Cohnen M, Kemper J, Möbes O et al (2002) Radiation dose in dental radiology. Eur Radiol 12(3):634–637

    PubMed  Google Scholar 

  9. Araki K, Maki K, Seki K et al (2004) Characteristics of a newly developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay™): system configuration and physical properties. Dentomaxillofac Radiol 33(1):51–59

    Article  PubMed  Google Scholar 

  10. Hashimoto K, Arai Y, Iwai K et al (2003) A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95(3):371–377

    Article  PubMed  Google Scholar 

  11. Maverna R, Gracco A (2007) Different diagnostic tools for the localization of impacted maxillary canines: clinical considerations. Prog Orthod 8(1):28–44

    PubMed  Google Scholar 

  12. Quereshy FA, Savell TA, Palomo JM (2008) Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. J Oral Maxillofac Surg 66(4):791–796

    Article  PubMed  Google Scholar 

  13. Hatcher DC, Aboudara CL (2004) Diagnosis goes digital. Am J Orthod Dentofacial Orthop 125(4):512–515

    Article  PubMed  Google Scholar 

  14. Terakado M, Hashimoto K, Arai Y et al (2000) Diagnostic imaging with newly developed ortho cubic super-high resolution computed tomography (Ortho-CT). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89(4):509–518

    Article  PubMed  Google Scholar 

  15. Müssig E, Wörtche R, Lux CJ (2005) Indications for digital volume tomography in orthodontics. J Orofac Orthop 66(3):241–249

    Article  PubMed  Google Scholar 

  16. Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):106–114

    Article  PubMed  Google Scholar 

  17. Manfredini D, Guarda-Nardini L (2008) Agreement between research diagnostic criteria for temporomandibular disorders and magnetic resonance diagnoses of temporomandibular disc displacement in a patient population. Int J Oral Maxillofac Surg 37(7):612–616

    Article  PubMed  Google Scholar 

  18. Guler N, Yatmaz P, Ataoglu H et al (2003) Temporomandibular internal derangement: correlation of MRI findings with clinical symptoms of pain and joint sounds in patients with bruxing behaviour. Dentomaxillofac Radiol 32(5):304–310

    Article  PubMed  Google Scholar 

  19. Helenius LMJ, Tervahartiala P, Helenius I et al (2006) Clinical, radiographic and MRI findings of the temporomandibular joint in patients with different rheumatic diseases. Int J Oral Maxillofac Surg 35(11):983–989

    Article  PubMed  Google Scholar 

  20. Ohnuki T, Fukuda M, Nakata A et al (2006) Evaluation of the position, mobility, and morphology of the disc by MRI before and after four different treatments for temporomandibular joint disorders. Dentomaxillofac Radiol 35(2):103–109

    Article  PubMed  Google Scholar 

  21. Larheim TA (2005) Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint. Cells Tissues Organs 180(1):6–21

    Article  PubMed  Google Scholar 

  22. Sener S, Akgänlü F (2004) MRI characteristics of anterior disc displacement with and without reduction. Dentomaxillofac Radiol 33(4):245–252

    Article  PubMed  Google Scholar 

  23. Lemke A, Griethe M, Peroz I et al (2005) Morphometric analysis of the temporomandibular joint with MRI in 320 joints. Rofo 177(2):217–228

    PubMed  Google Scholar 

  24. Katzberg RW, Bessette RW, Tallents RH et al (1986) Normal and abnormal temporomandibular joint: MR imaging with surface coil. Radiology 158(1):183–189

    PubMed  Google Scholar 

  25. Burnett K, Davis C, Read J (1987) Dynamic display of the temporomandibular joint meniscus by using “fast-scan” MR imaging. Am J Roentgenol 149(5):959–962

    Google Scholar 

  26. Chen YJ, Gallo LM, Meier D et al (2000) Dynamic magnetic resonance imaging technique for the study of the temporomandibular joint. J Orofac Pain 14(1):65–73

    PubMed  Google Scholar 

  27. Tymofiyeva O, Proff P, Richter E et al (2007) Correlation of MRT imaging with real-time axiography of TMJ clicks. Ann Anat 189(4):356–361

    Article  PubMed  Google Scholar 

  28. Farina D, Bodin C, Gandolfi S et al (2009) TMJ disorders and pain: assessment by contrast-enhanced MRI. Eur J Radiol 70:25–30

    Article  PubMed  Google Scholar 

  29. Lam EW, Hannam AG, Wood WW et al (1989) Imaging orofacial tissues by magnetic resonance. Oral Surg Oral Med Oral Pathol 68(1):2–8

    Article  PubMed  Google Scholar 

  30. Christianson R, Lufkin RB, Abemayor E et al (1989) MRI of the mandible. Surg Radiol Anat 11(2):163–169

    Article  PubMed  Google Scholar 

  31. Gray CF, Redpath TW, Smith FW (1998) Magnetic resonance imaging: a useful tool for evaluation of bone prior to implant surgery. Br Dent J 184(12):603–607

    Article  PubMed  Google Scholar 

  32. Gray CF, Redpath TW, Smith FW (1998) Low-field magnetic resonance imaging for implant dentistry. Dentomaxillofac Radiol 27(4):225–229

    Article  PubMed  Google Scholar 

  33. Gray CF, Redpath TW, Smith FW et al (2003) Advanced imaging: magnetic resonance imaging in implant dentistry: a review. Clin Oral Implants Res 14:18–27

    Article  PubMed  Google Scholar 

  34. Gray CF, Redpath TW, Bainton R et al (2001) Magnetic resonance imaging assessment of a sinus lift operation using reoxidised cellulose (SurgicelR) as graft material. Clin Oral Implants Res 12:526–530

    Article  PubMed  Google Scholar 

  35. Nasel CJ, Pretterklieber M, Gahleitner A et al (1999) Osteometry of the mandible performed using dental MR imaging. AJNR Am J Neuroradiol 20(7):1221–1227

    PubMed  Google Scholar 

  36. Nasel C, Gahleitner A, Breitenseher M et al (1998) Localization of the mandibular neurovascular bundle using dental magnetic resonance imaging. Dentomaxillofac Radiol 27(5):305–307

    Article  PubMed  Google Scholar 

  37. Nasel C, Gahleitner A, Breitenseher M et al (1998) Dental MR tomography of the mandible. J Comput Assist Tomogr 22(3):498–502

    Article  PubMed  Google Scholar 

  38. Haßfeld S, Fiebach J, Widmann S et al (2001) Magnetresonanztomographie zur Planung vor dentaler Implantation. Mund Kiefer Gesichtschir 5(3):186–192

    Article  PubMed  Google Scholar 

  39. Kress B, Gottschalk A, Anders L et al (2004) High-resolution dental magnetic resonance imaging of inferior alveolar nerve responses to the extraction of third molars. Eur Radiol 14:1416–1420

    Article  PubMed  Google Scholar 

  40. Kress B, Nissen S, Gottschalk A et al (2003) High-resolution MR technique allowing visualization of the course of the inferior alveolar nerve along cystic processes. Eur Radiol 13(7):1612–1614

    Article  PubMed  Google Scholar 

  41. Kress B, Gottschalk A, Anders L et al (2003) Topography of the inferior alveolar nerve in relation to cystic processes of the mandible in dental MRI. Rofo 175(1):67–69

    PubMed  Google Scholar 

  42. Gahleitner A, Solar P, Nasel C et al (1999) Die Magnetresonanztomographie in der Dentalradiologie (Dental-MRT). Radiologe 39(12):1044–1050

    Article  PubMed  Google Scholar 

  43. Kress B, Buhl Y, Anders L et al (2004) Quantitative analysis of MRI signal intensity as a tool for evaluating tooth pulp vitality. Dentomaxillofac Radiol 33(4):241–244

    Article  PubMed  Google Scholar 

  44. Ploder O, Partik B, Rand T et al (2001) Reperfusion of autotransplanted teeth—comparison of clinical measurements by means of dental magnetic resonance imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92(3):335–340

    Article  PubMed  Google Scholar 

  45. Kress B, Buhl Y, Hähnel S et al (2007) Age- and tooth-related pulp cavity signal intensity changes in healthy teeth: a comparative magnetic resonance imaging analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(1):134–137

    Article  PubMed  Google Scholar 

  46. Goto TK, Nishida S, Nakamura Y et al (2007) The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(4):550–559

    Article  PubMed  Google Scholar 

  47. Tutton LM, Goddard PR (2002) MRI of the teeth. Br J Radiol 75(894):552–562

    PubMed  Google Scholar 

  48. Olt S, Jakob PM (2004) Contrast-enhanced dental MRI for visualization of the teeth and jaw. Magn Reson Med 52(1):174–176

    Article  PubMed  Google Scholar 

  49. Tymofiyeva O, Schmid F, Rottner K et al (2007) In-vivo dental impression using MRI. In: Proc. ISMRM/ESMRMB, Berlin, Germany (abstract 3007)

  50. Tymofiyeva O, Rottner K, Boldt J et al (2008) First CAD/CAM dental restorations based on in vivo dental MRI. IN: Proc. ESMRMB, Valencia, Spain (abstract 797)

  51. Tymofiyeva O, Rottner K, Gareis D et al (2008) In vivo MRI-based dental impression using an intraoral RF receiver coil. Concept Magn Reson B Magn Reson Eng 33B:244–251

    Article  Google Scholar 

  52. Tymofiyeva O, Rottner K, Schmid F et al (2008) In vivo caries imaging using contrast-enhanced dental MRI. In: Proc. ISMRM, Toronto, Canada (abstract 2007)

  53. Nance RS, Tyndall D, Levin LG et al (2000) Diagnosis of external root resorption using TACT (tuned-aperture computed tomography). Endod Dent Traumatol 16:24–28

    Article  PubMed  Google Scholar 

  54. Klocke A, Kemper J, Schulze D et al (2005) Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla. J Orofac Orthop 66(4):279–287

    Article  PubMed  Google Scholar 

  55. Tymofiyeva O, Rottner K, Vaegler S et al (2008) Influence of composite dental materials on dental MRI. In: Proc. ESMRMB, Valencia, Spain (abstract 843)

  56. Shafiei F, Honda E, Takahashi H et al (2003) Artifacts from dental casting alloys in magnetic resonance imaging. J Dent Res 82(8):602–606

    Article  PubMed  Google Scholar 

  57. Abbaszadeh K, Heffez LB, Mafee MF (2000) Effect of interference of metallic objects on interpretation of T1-weighted magnetic resonance images in the maxillofacial region. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89(6):759–765

    Article  PubMed  Google Scholar 

  58. Eggers G, Rieker M, Kress B et al (2005) Artefacts in magnetic resonance imaging caused by dental material. MAGMA 18(2):103–111

    Article  PubMed  Google Scholar 

  59. Starčuk Z, Bartušek K, Hubálková H et al (2006) Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use. Meas Sci Rev 6(2):24–27

    Google Scholar 

  60. Lissac M, Metrop D, Brugirard J et al (1991) Dental materials and magnetic resonance imaging. Invest Radiol 26(1):40–45

    Article  PubMed  Google Scholar 

  61. Masumi S, Arita M, Morikawa M et al (1993) Effect of dental metals on magnetic resonance imaging (MRI). J Oral Rehabil 20(1):97–106

    Article  PubMed  Google Scholar 

  62. Zerfowski M, Reinert S, Mikle S et al (1999) Dental MRI. Phantom study and clinical results. Mund Kiefer Gesichtschir 3:158–161

    Article  Google Scholar 

  63. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Res Med 42(5):952–962

    Article  Google Scholar 

  64. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Res Med 47(6):1202–1210

    Article  Google Scholar 

  65. Olsen RV, Munk PL, Lee MJ et al (2000) Metal artifact reduction sequence: early clinical applications. Radiographics 20(3):699–712

    PubMed  Google Scholar 

  66. Zhang Y, Zhang L, Zhu XR et al (2007) Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 67(3):924–932

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Proff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tymofiyeva, O., Rottner, K., Jakob, P.M. et al. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Invest 14, 169–176 (2010). https://doi.org/10.1007/s00784-009-0277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-009-0277-1

Keywords

Navigation