Skip to main content

Advertisement

Log in

Use of platelet-rich plasma in periodontal surgery—a prospective randomised double blind clinical trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of this prospective controlled randomized clinical trial was to evaluate the additional effect of platelet-rich plasma (PRP) in attachment gain. Twenty-two patients showing contralateral intrabony defects were included. Defects were randomized to β-TCP (Cerasorb®) in combination with PRP (test) or alone (control). Probing pocket depth (PPD), clinical attachment level (CAL), and relative AL (RAL) were assessed at the first, initial, re-evaluation (or basis examinations) and 6 months after surgery. Defect dimensions were recorded at baseline surgery (day 0) and during re-entry surgery (after 6 months), with vertical depth of the defect as primary outcome variable. An early healing index (EHI) was assessed 3 days, 1, 2 and 4 weeks after surgery. Both treatments led to clinical improvements. The median reduction of open vertical depth was 1.9 mm (interquartile intervals, 0.75 and 2.5 mm) at test sites, compared with 2.6 mm (1.8 and 3.5 mm) at control sites (p = 0.19, Wilcoxon). The median reductions of PPD and CAL at the four sites in close proximity to the defect in the interproximal area at test sites were 0.8 and 0.28 mm, and at control sites 0.4 and 0.13 mm, respectively. The EHI showed a reduction from grade 3 after 3 days to grade 1 after 4 weeks. PRP did not improve the results achieved with β-TCP in the treatment of intrabony defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anitua E (2001) The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent 13:487–493

    PubMed  Google Scholar 

  2. Bowers GM, Vargo JW, Levy B, Emerson JR, Bergquist JJ (1986) Histologic observations following the placement of tricalcium phosphate implants in human intrabony defects. J Periodontol 57:286–287

    PubMed  Google Scholar 

  3. Camargo PM, Lekovic V, Weinlaender M, Vasilic N, Madzarevic M, Kenney EB (2002) Platelet-rich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defects in humans. J Periodontal Res 37:300–306

    Article  PubMed  Google Scholar 

  4. Camargo PM, Lekovic V, Weinlaender M, Vasilic N, Madzarevic M, Kenney EB (2005) A reentry study on the use of bovine porous bone mineral, GTR, and platelet-rich plasma in the regenerative treatment of intrabony defects in humans. Int J Periodontics Restor Dent 25:49–59

    Google Scholar 

  5. Cameron HU (1992) Tricalcium phosphate as a bone graft substitute. Contemp Orthop 25:506–508

    PubMed  Google Scholar 

  6. Christgau M, Moder D, Hiller KA, Dada A, Schmitz G, Schmalz G (2006) Growth factors and cytokines in autologous platelet concentrate and their correlation to periodontal regeneration outcomes. J Clin Periodontol 33:837–845

    Article  PubMed  Google Scholar 

  7. Christgau M, Moder D, Wagner J, Glassl M, Hiller KA, Wenzel A, Schmalz G (2006) Influence of autologous platelet concentrate on healing in intra-bony defects following guided tissue regeneration therapy: a randomized prospective clinical split-mouth study. J Clin Periodontol 33:908–921

    Article  PubMed  Google Scholar 

  8. Cortellini P, Pini PG, Tonetti MS (1996) The modified papilla preservation technique with bioresorbable barrier membranes in the treatment of intrabony defects. Case reports. Int J Periodontics Restor Dent 16:546–559

    Google Scholar 

  9. Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–87

    PubMed  Google Scholar 

  10. Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24:379–396

    Article  PubMed  Google Scholar 

  11. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208

    Article  PubMed  Google Scholar 

  12. Delecrin J, Takahashi S, Gouin F, Passuti N (2000) A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 25:563–569

    Article  PubMed  Google Scholar 

  13. Ducheyne P (1988) Titanium and calcium phosphate ceramic dental implants, surfaces, coatings and interfaces. J Oral Implantol 14:325–340

    PubMed  Google Scholar 

  14. Ducheyne P, Radin S, Heughebaert M, Heughebaert JC (1990) Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials 11:244–254

    Article  PubMed  Google Scholar 

  15. Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 27:25–34

    Article  PubMed  Google Scholar 

  16. Dupraz A, Delecrin J, Moreau A, Pilet P, Passuti N (1998) Long-term bone response to particulate injectable ceramic. J Biomed Mater Res 42:368–375

    Article  PubMed  Google Scholar 

  17. Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10(Suppl 2):S141–S146

    PubMed  Google Scholar 

  18. Hamadouche M, Sedel L (2000) Ceramics in orthopaedics. J Bone Joint Surg Br 82:1095–1099

    Article  PubMed  Google Scholar 

  19. Hollinger JO, Brekke J, Gruskin E, Lee D (1996) Role of bone substitutes. Clin Orthop Relat Res 324:55–65

    Article  PubMed  Google Scholar 

  20. Hossain MZ, Yamada T, Yamauchi K (1989) [Biodegradable ceramic as a bone graft substitute followed by orthodontic tooth movement]. Nippon Kyosei Shika Gakkai Zasshi 48:483–495

    PubMed  Google Scholar 

  21. Kawase T, Okuda K, Wolff LF, Yoshie H (2003) Platelet-rich plasma-derived fibrin clot formation stimulates collagen synthesis in periodontal ligament and osteoblastic cells in vitro. J Periodontol 74:858–864

    Article  PubMed  Google Scholar 

  22. Kovacs K, Velich N, Huszar T, Fenyves B, Suba Z, Szabo G (2005) Histomorphometric and densitometric evaluation of the effects of platelet-rich plasma on the remodeling of beta-tricalcium phosphate in beagle dogs. J Craniofac Surg 16:150–154

    Article  PubMed  Google Scholar 

  23. Kovacs K, Velich N, Huszar T, Szabo G, Semjen G, Reiczigel J, Suba Z (2003) Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry. Acta Vet Hung 51:475–484

    Article  PubMed  Google Scholar 

  24. Legeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1–201

    PubMed  Google Scholar 

  25. Legeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88

    Article  PubMed  Google Scholar 

  26. Lekovic V, Camargo PM, Weinlaender M, Kenney EB, Vasilic N (2001) Combination use of bovine porous bone mineral, enamel matrix proteins, and a bioabsorbable membrane in intrabony periodontal defects in humans. J Periodontol 72:583–589

    Article  PubMed  Google Scholar 

  27. Lekovic V, Camargo PM, Weinlaender M, Vasilic N, Aleksic Z, Kenney EB (2003) Effectiveness of a combination of platelet-rich plasma, bovine porous bone mineral and guided tissue regeneration in the treatment of mandibular grade II molar furcations in humans. J Clin Periodontol 30:746–751

    Article  PubMed  Google Scholar 

  28. Lekovic V, Camargo PM, Weinlaender M, Vasilic N, Kenney EB (2002) Comparison of platelet-rich plasma, bovine porous bone mineral, and guided tissue regeneration versus platelet-rich plasma and bovine porous bone mineral in the treatment of intrabony defects: a reentry study. J Periodontol 73:198–205

    Article  PubMed  Google Scholar 

  29. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646

    Article  PubMed  Google Scholar 

  30. Miranda SR, Nary FH, Padovan LE, Ribeiro DA, Nicolielo D, Matsumoto MA (2006) Use of platelet-rich plasma under autogenous onlay bone grafts. Clin Oral Implants Res 17:694–699

    Article  PubMed  Google Scholar 

  31. Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71:354–361

    Article  PubMed  Google Scholar 

  32. Nagase M, Chen RB, Araya Y, Nakajima T (1991) Evaluation of a bone substitute prepared from alpha-tricalcium phosphate and an acid polysaccharide solution. J Oral Maxillofac Surg 49:1305–1309

    Article  PubMed  Google Scholar 

  33. Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H (2003) Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 74:849–857

    Article  PubMed  Google Scholar 

  34. Palti A, Hoch T (2002) A concept for the treatment of various dental bone defects. Implant Dent 11:73–78

    PubMed  Google Scholar 

  35. Radin S, Ducheyne P, Berthold P, Decker S (1998) Effect of serum proteins and osteoblasts on the surface transformation of a calcium phosphate coating: a physicochemical and ultrastructural study. J Biomed Mater Res 39:234–243

    Article  PubMed  Google Scholar 

  36. Saffar JL, Colombier ML, Detienville R (1990) Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol 61:209–216

    PubMed  Google Scholar 

  37. Snyder AJ, Levin MP, Cutright DE (1984) Alloplastic implants of tricalcium phosphate ceramic in human periodontal osseous defects. J Periodontol 55:273–277

    PubMed  Google Scholar 

  38. Stahl SS, Froum S (1986) Histological evaluation of human intraosseous healing responses to the placement of tricalcium phosphate ceramic implants. I. Three to eight months. J Periodontol 57:211–217

    PubMed  Google Scholar 

  39. Sugaya A, Minabe M, Hori T, Tatsumi J, Watanabe Y, Ikeda K, Numabe Y, Hayashi H, Kamoi K (1990) Effects on wound healing of tricalcium phosphate-collagen complex implants in periodontal osseous defects in the dog. J Periodontal Res 25:60–63

    Article  PubMed  Google Scholar 

  40. Tamura K, Sato S, Kishida M, Asano S, Murai M, Ito K (2007) The use of porous beta-tricalcium phosphate blocks with platelet-rich plasma as an onlay bone graft biomaterial. J Periodontol 78:315–321

    Article  PubMed  Google Scholar 

  41. Trisi P, Rao W, Rebaudi A, Fiore P (2003) Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects. Int J Periodontics Restor Dent 23:69–77

    Google Scholar 

  42. Van Winkelhoff AJ, Rodenburg JP, Goene RJ, Abbas F, Winkel EG, de Graaff J (1989) Metronidazole plus amoxycillin in the treatment of Actinobacillus actinomycetemcomitans associated periodontitis. J Clin Periodontol 16:128–131

    Article  PubMed  Google Scholar 

  43. Velich N, Nemeth Z, Hrabak K, Suba Z, Szabo G (2004) Repair of bony defect with combination biomaterials. J Craniofac Surg 15:11–15

    Article  PubMed  Google Scholar 

  44. Velich N, Nemeth Z, Toth C, Szabo G (2004) Long-term results with different bone substitutes used for sinus floor elevation. J Craniofac Surg 15:38–41

    Article  PubMed  Google Scholar 

  45. Wachtel H, Schenk G, Bohm S, Weng D, Zuhr O, Hurzeler MB (2003) Microsurgical access flap and enamel matrix derivative for the treatment of periodontal intrabony defects: a controlled clinical study. J Clin Periodontol 30:496–504

    Article  PubMed  Google Scholar 

  46. Weibrich G, Kleis WK, Hafner G (2002) Growth factor levels in the platelet-rich plasma produced by 2 different methods: curasan-type PRP kit versus PCCS PRP system. Int J Oral Maxillofac Surg 17:184–190

    Google Scholar 

  47. Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55:1294–1299

    Article  PubMed  Google Scholar 

  48. Wiltfang J, Schlegel KA, Schultze-Mosgau S, Nkenke E, Zimmermann R, Kessler P (2003) Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseous integration and degradation? Clin Oral Impl Res 14:213–218

    Article  Google Scholar 

  49. Zerbo IR, Zijderveld SA, de Boer A, Bronckers AL, de Lange G, ten Bruggenkate CM, Burger EH (2004) Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clin Oral Implants Res 15:724–732

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Mr. Helge Hudel for his competent contribution in the statistical analysis. This study was supported by Curasan AG, Kleinostheim, Germany

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Meyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harnack, L., Boedeker, R.H., Kurtulus, I. et al. Use of platelet-rich plasma in periodontal surgery—a prospective randomised double blind clinical trial. Clin Oral Invest 13, 179–187 (2009). https://doi.org/10.1007/s00784-008-0223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-008-0223-7

Keywords

Navigation