Skip to main content
Log in

Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The present paper accomplishes a major step towards a reconciliation of two conflicting approaches in mathematical finance: on the one hand, the mainstream approach based on the notion of no arbitrage (Black, Merton & Scholes), and on the other hand, the consideration of non-semimartingale price processes, the archetype of which being fractional Brownian motion (Mandelbrot). Imposing (arbitrarily small) proportional transaction costs and considering logarithmic utility optimisers, we are able to show the existence of a semimartingale, frictionless shadow price process for an exponential fractional Brownian financial market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, we say that a property holds locally for the process \(S\) if there exists a localising sequence of stopping times \((\tau_{n})_{n=1}^{\infty}\) such that the stopped process \(S^{\tau_{n}}\) has this property for each \(n\).

  2. Here, we mean that there exists one localised version of \(S\), not depending on \(\mu\), which admits a \(\mu \)-consistent price system for all \(\mu\in(0, 1)\).

  3. The set \(\mathcal{B}(y)\) of all \(\lambda \) -consistent supermartingale deflators consists of all pairs of nonnegative càdlàg supermartingales \(Y = (Y^{0}_{t}, Y^{1}_{t})_{0 \leq t \leq T}\) such that \(\mathbb{\operatorname{E}}[Y^{0}_{0}] = y\), \(Y^{1} = Y^{0} \tilde{S}\) for some \([(1 - \lambda) S, S]\)-valued process \(\tilde{S} = (\tilde{S}_{t})_{0 \leq t \leq T}\), and \(Y^{0} (\phi^{0} + \phi^{1} \tilde{S}) = Y^{0} \phi^{0} + Y^{1} \phi ^{1}\) is a nonnegative càdlàg supermartingale for all \(\phi\in \mathcal{A} (1)\). Note that \(y \mathcal{Z} \subseteq\mathcal{B} (y)\) for \(y > 0\) by Proposition 2.6 of [11].

  4. Equation (A.3) is actually not used in this article, but this result seemed to us worth being written.

  5. Exact translation and scale invariance of fractional Brownian motion is actually not needed here: more precisely, exact invariance shortens the proof by allowing the use of Fernique’s theorem, but a slight refinement of that theorem would make the result work as soon as one has a bound of the type \(\operatorname{Var}[B^{H}_{t} - B^{H}_{s}] \leq C \left\lvert t - s\right\rvert ^{2 H}\); see e.g. [28, Lemma 4.2].

References

  1. Ankirchner, S., Imkeller, P.: Finite utility on financial markets with asymmetric information and structure properties of the price dynamics. Ann. Inst. Henri Poincaré Probab. Stat. 41, 479–503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraktar, E., Yu, X.: On the market viability under proportional transaction costs. Mathematical Finance (2013). To appear. Available online at: arXiv:1312.3917

  3. Bender, C.: Simple arbitrage. Ann. Appl. Probab. 22, 2067–2085 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchard, B.: Utility maximization on the real line under proportional transaction costs. Finance Stoch. 6, 495–516 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchard, B., Mazliak, L.: A multidimensional bipolar theorem in \(L^{0}(\mathbb{R}^{d};\Omega ,\mathcal {F},P)\). Stoch. Process. Appl. 107, 213–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campi, L., Owen, M.P.: Multivariate utility maximization with proportional transaction costs. Finance Stoch. 15, 461–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6, 113–165 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Cvitanić, J., Wang, H.: On optimal terminal wealth under transaction costs. J. Math. Econ. 35, 223–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Czichowsky, C., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, shadow prices, and duality in discrete time. SIAM J. Financ. Math. 5, 258–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czichowsky, C., Schachermayer, W.: Duality theory for portfolio optimisation under transaction costs. Ann. Appl. Probab. 26, 1888–1941 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czichowsky, C., Schachermayer, W., Yang, J.: Shadow prices for continuous processes. Math. Finance 27, 623–658 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deelstra, G., Pham, H., Touzi, N.: Dual formulation of the utility maximization problem under transaction costs. Ann. Appl. Probab. 11, 1353–1383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dudley, R.M.: Uniform Central Limit Theorems, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 142. Cambridge University Press, New York (2014)

    MATH  Google Scholar 

  14. Guasoni, P.: Optimal investment with transaction costs and without semimartingales. Ann. Appl. Probab. 12, 1227–1246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guasoni, P.: No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16, 569–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guasoni, P., Rásonyi, M., Schachermayer, W.: The fundamental theorem of asset pricing for continuous processes under small transaction costs. Ann. Finance 6, 157–191 (2010)

    Article  MATH  Google Scholar 

  17. He, H., Pearson, N.D.: Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite-dimensional case. J. Econ. Theory 54, 259–304 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kabanov, Y.M., Last, G.: Hedging under transaction costs in currency markets: a continuous-time model. Math. Finance 12, 63–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kallsen, J., Muhle-Karbe, J.: Existence of shadow prices in finite probability spaces. Math. Methods Oper. Res. 73, 251–262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kardaras, C., Platen, E.: On the semimartingale property of discounted asset-price processes. Stoch. Process. Appl. 121, 2678–2691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Larsen, K., Žitković, G.: On the semimartingale property via bounded logarithmic utility. Ann. Finance 4, 255–268 (2008)

    Article  MATH  Google Scholar 

  27. Mandelbrot, B.: The variation of some other speculative prices. J. Bus. 40, 393–413 (1967)

    Article  Google Scholar 

  28. Peyre, R.: Fractional Brownian motion satisfies two-way crossing. Bernoulli 23, 3571–3597 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schachermayer, W.: The Asymptotic Theory of Transaction Costs. Zürich Lecture Notes in Advanced Mathematics. EMS Publishing House, Zürich (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Rémi Peyre partially supported by the Austrian Science Fund (FWF) under grant P25815. Walter Schachermayer partially supported by Dr. Max Rössler, the Walter Haefner Foundation, the ETH Zürich Foundation, the Austrian Science Fund (FWF) under grants P25815 and P28661 and by the Vienna Science and Technology Fund (WWTF) under grant MA14-008. Junjian Yang partially supported by the Austrian Science Fund (FWF) under grant P25815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Czichowsky.

Appendix: Fluctuations of fractional Brownian motion

Appendix: Fluctuations of fractional Brownian motion

In this appendix, we establish a control on the number of fluctuations of fractional Brownian motion (Proposition A.1). It allows us to show the finiteness of the indirect utility for the proof of Theorem 2.4, and may also be interesting in its own right. Although the results stated here only deal with the case of fractional Brownian motion, our techniques can actually also be applied to a broader class of Gaussian processes.

Let \(B^{H} = (B^{H}_{t})_{t \geq0}\) be a standard fractional Brownian motion with Hurst parameter \(H \in(0, 1]\). Fix \(\delta> 0\) and define the \(\delta\)-fluctuation times of \(B^{H}\), denoted by \((\tau_{j} (\omega ))_{j \in \mathbb {N}}\), resp. the number of \(\delta\)-fluctuations of \(B^{H}\) up to time \(T \in(0, \infty)\), denoted by \(F^{(\delta)}_{T} (\omega)\), exactly as we defined these concepts for \(X\) in (4.3) and (4.4).

The main result of this appendix is the following proposition:

Proposition A.1

With the notation from above, there exist finite positive constants \(C = C (H)\), \(C' = C' (H)\) such that

$$ \mathbb {P}{\brack {F^{(\delta)}_{T} \geq n}} \leq\exp \left(-C^{-1} \delta^{2} T^{-2 H} n (n^{2 H \wedge1} - C' \log n)\right)\quad\textit{for all }n \geq2 . $$
(A.1)

The interest of Proposition A.1 for this article lies in the following corollary:

Corollary A.2

With the above notation, for any \(\delta> 0\), the random variable \(F^{(\delta)}_{T}\) has exponential moments of all orders, that is,

$$ \mathbb{\operatorname{E}}{\brack {\exp(a F^{(\delta)}_{T})}} < \infty\quad\textit{for all }a\in \mathbb {R}. $$
(A.2)

Moreover, if \(H \geq1/2\), this random variable even has a Gaussian moment, that is, there exists \(a>0\) such that Footnote 4

$$ \mathbb{\operatorname{E}}{\brack {\exp\big(a (F^{(\delta)}_{T})^{2}\big)} }< \infty. $$
(A.3)

Proof of Corollary A.2

For \(f (x) = \exp(ax)\) and \(f (x) = \exp(a x^{2})\), we have

$$\mathbb{\operatorname{E}}{\brack {f (F^{(\delta)}_{T})}} = f (0) + \int_{0}^{\infty}f' (x) \mathbb {P}{\brack {F^{(\delta)}_{T} \geq x}} \mathord {\mathrm {d} \mathord {x}} $$

by Fubini’s theorem. Combining this with the estimate (A.1) gives (A.2) and (A.3). □

Proof of Proposition A.1

Throughout the proof, we denote by \(C, C' > 0\) constants only depending on \(H\), but whose precise value may vary from appearance to appearance.

Let \(n, m \in \mathbb {N}\) be such that \(m > n \geq2\). We divide \([0, T]\) into \(m\) subintervals \(I_{k} := [\frac{k}{m}T, \frac{k + 1}{m}T]\) for \(k = 0, \ldots, m - 1\). Denote their midpoints by \(t_{k} := \frac{k + 1/2}{m} T\). Then we can estimate the probability of the set

$$A_{1} := \bigcup_{k = 0}^{m - 1} \bigg\{ \exists t \in I_{k} : \left\lvert B^{H}_{t} - B^{H}_{t_{k}}\right\rvert > \frac{1}{4} \delta\bigg\} $$

by

$$\begin{aligned} \mathbb {P}{\brack {A_{1}}} & \leq m \mathbb {P}{\brack {\exists t \in I_{k} : \left\lvert B^{H}_{t} - B^{H}_{t_{k}}\right\rvert > \frac{1}{4} \delta}} \\ &= m \mathbb {P}{\brack {\sup_{\left\lvert t\right\rvert \leq1} \left\lvert B^{H}_{t}\right\rvert > (T / 2 m)^{-H} \frac{1}{4} \delta}} \\ &\leq C' m \exp \left(-C^{-1} \left((m / T)^{H} \delta\right)^{2}\right) , \end{aligned}$$
(A.4)

where the equality comes from translation and scale invariance of fractional Brownian motionFootnote 5 and the last inequality from Fernique’s theorem [13, Lemma 2.2.5].

On the complement \(A_{1}^{{c}}\) of \(A_{1}\), we then have that

$$ \sup_{t \in I_{k}} \left\lvert B^{H}_{t} - B^{H}_{t_{k}}\right\rvert \leq\frac{1}{4} \delta\quad \text{for all $k = 0, \ldots, m - 1$} . $$
(A.5)

Suppose now that \(F^{(\delta)}_{T}(\omega)\geq n\). Then there must be at least \((n + 1)\) “random indices” \(0 = K_{0} (\omega) < K_{1} (\omega) < \cdots< K_{n}(\omega) < m\) with \(\tau_{j}(\omega)\in I_{K_{j}(\omega)}\) for \(j = 0, \ldots, n\). Because of (A.5) and \(\left\lvert B^{H}_{\tau_{j}} - B^{H}_{\tau_{j + 1}}\right\rvert = \delta\), we then must have \(\left\lvert B^{H}_{t_{K_{j} }} - B^{H}_{t_{K_{j + 1}}}\right\rvert \geq\frac{1}{2} \delta\) for \(j = 0, \ldots, n - 1\) on \(\{F^{(\delta)}_{T} \geq n\} \cap A_{1}^{{c}}\).

In order to estimate \(\mathbb {P}[\{F^{(\delta)}_{T}\geq n\}\cap A_{1}^{{c}}]\), it therefore only remains to bound the probability of the event

$$A_{2} := \bigcap_{j=0}^{n - 1}\bigg\{ |B^{H}_{t_{K_{j}}}-B^{H}_{t_{K_{j+1}}}|\geq\frac{1}{2}\delta\bigg\} . $$

But the set \(A_{2}\) depends on the realisation of the “random indices” \((K_{j} (\omega))_{0 \leq j \leq n}\). To get rid of this dependence, we simply estimate the probability of the event

$$A_{3} := \bigcap_{j=0}^{n - 1} \left\lbrace \left\lvert B^{H}_{t_{k_{j}}} - B^{H}_{t_{k_{j + 1}}}\right\rvert \geq\frac{1}{2} \delta\right\rbrace $$

for all \(\binom{m - 1}{n}\) possible realisations \(0 = k_{0} < k_{1} < \cdots< k_{n} < m\) of our “random indices”. For this, fix an arbitrary realisation of indices \((k_{j})_{0 \leq j \leq n}\) and set

$$\Delta_{j} := B^{H}_{t_{k_{j + 1}}} - B^{H}_{t_{k_{j}}} \quad\text{for $j = 0, \ldots, m - 1$.} $$

Then

$$A_{3} = \bigcap_{j = 0}^{n - 1} \left\lbrace |\Delta_{j}| \geq\frac{1}{2} \delta\right\rbrace = \bigcap_{j = 0}^{n - 1} \left\lbrace \mathrm{\operatorname{sgn}}(\Delta_{j}) \Delta_{j} \geq \frac{1}{2} \delta\right\rbrace \subseteq \left\lbrace \sum_{j = 0}^{n - 1} \mathrm{\operatorname{sgn}}(\Delta_{j}) \Delta_{j} \geq\frac{1}{2} n \delta\right\rbrace , $$

so that

$$A_{3} \subseteq\bigcup\bigg\{ \Big\{ \sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j} \geq\frac{1}{2} n \delta\Big\} : (\epsilon_{j})_{0 \leq j < n} \in\{-1, +1\}^{n}\bigg\} . $$

For fixed \((\epsilon_{j})_{0 \leq j < n} \in\{-1, +1\}^{n}\), we have that \(\sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j}\) is a centred normally distributed random variable with variance

$$ \operatorname{Var} \left[\sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j}\right] = \sum_{j, j' = 0}^{n - 1} \epsilon_{j} \epsilon_{j'} \operatorname{Cov}(\Delta_{j}, \Delta_{j'}) \leq\sum_{j, j' = 0}^{n - 1} \left\lvert \operatorname{Cov}(\Delta_{j}, \Delta_{j'})\right\rvert . $$
(A.6)

To estimate (A.6), we distinguish the case \(H \geq1/2\) from the case \(H < 1/2\). If \(H \geq1/2\), the covariance \(\operatorname{Cov}(\Delta_{j}, \Delta_{j'})\) is always nonnegative so that

$$\sum_{j, j' = 0}^{n - 1} \left\lvert \operatorname{Cov}(\Delta_{j}, \Delta_{j'})\right\rvert = \operatorname{Var} \left[{\sum_{j = 0}^{n - 1} \Delta_{i}}\right] = \operatorname{Var}[B^{H}_{t_{k_{n}}} - B^{H}_{t_{k_{0}}}] = \left\lvert t_{k_{0}} - t_{k_{n}}\right\rvert ^{2H} \leq T^{2 H}. $$

If \(H < 1/2\), the covariance \(\operatorname{Cov}(\Delta_{j}, \Delta_{j'})\) is nonpositive as soon as \(j \neq j'\), so that

$$\begin{aligned} \begin{aligned} \sum_{j' = 0}^{n - 1} \left\lvert \operatorname{Cov}(\Delta_{j}, \Delta_{j'})\right\rvert &= \operatorname{Var}[\Delta_{j}] - \operatorname{Cov} \left(\Delta_{j}, \sum_{j' < j} \Delta _{j'}\right) - \operatorname{Cov} \left(\Delta_{j}, \sum_{j' > j} \Delta_{j'}\right) \\ &= \operatorname{Var}[\Delta_{j}] - \operatorname{Cov}(\Delta_{j}, B^{H}_{t_{k_{0}}}-B^{H}_{t_{k_{j}}}) - \operatorname{Cov}(\Delta_{j}, B^{H}_{t_{k_{j + 1}}} - B^{H}_{t_{k_{n}}}). \end{aligned} \end{aligned}$$

But for \(0 \leq t \leq u \leq v \leq T\), it follows from the definition of fractional Brownian motion that

$$-\operatorname{Cov}(B^{H}_{u} - B^{H}_{t}, B^{H}_{v} - B^{H}_{u}) = \tfrac{1}{2} (\left\lvert t - u\right\rvert ^{2 H} + \left\lvert u - v\right\rvert ^{2 H} - \left\lvert t - v\right\rvert ^{2 H}) \leq\tfrac{1}{2} \left\lvert t - u\right\rvert ^{2 H}. $$

Therefore, we have that

$$\begin{aligned} \sum_{j' = 0}^{n - 1} \left\lvert \operatorname{Cov}(\Delta_{j}, \Delta_{j'})\right\rvert &\leq \left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert ^{2 H} + \frac{1}{2} \left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert ^{2 H} + \frac{1}{2} \left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert ^{2 H} \\ &= 2\left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert ^{2 H} \end{aligned}$$

and thus

$$ \operatorname{Var}\bigg[\sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j}\bigg] \leq2 \sum _{j = 0}^{n - 1} \left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert ^{2 H}. $$
(A.7)

But since \(H < 1/2\), the function \(x \mapsto x^{2H}\) is concave, so that the right-hand side of (A.7) is bounded above by

$$2 n \left(\frac{\sum_{j = 0}^{n - 1} \left\lvert t_{k_{j}} - t_{k_{j + 1}}\right\rvert }{n}\right)^{2 H} = 2 n (\left\lvert t_{k_{0}} - t_{k_{n}}\right\rvert / n)^{2 H} \leq2 n (T / n)^{2 H} = 2 n^{1 - 2 H} T^{2 H} . $$

Hence in both cases, we can estimate

$$\operatorname{Var} \left[\sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j}\right] \leq2 T^{2 H} n^{(1 - 2 H)_{+}}. $$

So, using the classical bound that \(\mathbb {P}[Z \geq x] \leq e^{-x^{2} / 2}\) for any standard normally distributed random variable \(Z\sim\mathcal {N}(0,1)\), we have that

$$\mathbb {P}{\brack {\sum_{j = 0}^{n - 1} \epsilon_{j} \Delta_{j} \geq\frac {1}{2} n \delta}} \leq\exp\bigg(-\frac{1}{16} T^{-2 H} \delta^{2} n^{1 + (2 H \wedge1)}\bigg) $$

for all \(2^{n}\) possible choices of \((\epsilon_{j})_{0 \leq j < n} \in\{ -1, +1\}^{n}\), and therefore

$$\mathbb {P}{\brack {A_{3}}} \leq2^{n} \exp\bigg(-\frac{1}{16} T^{-2 H} \delta^{2} n^{1 + (2 H \wedge1)}\bigg) . $$

Combining that estimate with (A.4) and using that \(\binom{m - 1}{n} \leq m^{n}\), we finally get that

$$\begin{aligned} \mathbb {P}[F^{(\delta)}_{T} \geq n] &\leq \mathbb {P}{\brack {A_{1}}}+\mathbb {P}[\{F^{(\delta )}_{T} \geq n\}\cap A^{c}_{1}]\\ &\leq C' m \exp(-C^{-1} T^{-2 H} \delta^{2} m^{2 H})\\ &\phantom{=:}+ 2^{n} m^{n} \exp\bigg(-\frac{1}{16} T^{-2 H} \delta^{2} n^{1 + (2 H \wedge1)}\bigg). \end{aligned}$$

Now it only remains to choose \(m\) to be \(\lceil n^{1/H} \rceil\) to obtain

$$\mathbb {P}[F^{(\delta)}_{T} \geq n]\leq\exp \left(-C^{-1} \delta^{2} T^{-2 H} n (n^{2 H \wedge1} - C' \log n)\right) , $$

which completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czichowsky, C., Peyre, R., Schachermayer, W. et al. Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs. Finance Stoch 22, 161–180 (2018). https://doi.org/10.1007/s00780-017-0351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0351-5

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation