Skip to main content
Log in

On arbitrages arising with honest times

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In the context of a general continuous financial market model, we study whether the additional information associated with an honest time τ gives rise to arbitrage profits. By relying on the theory of progressive enlargement of filtrations, we explicitly show that no kind of arbitrage profit can ever be realised strictly before τ, whereas classical arbitrage opportunities can be realised exactly at τ as well as after τ. Moreover, arbitrages of the first kind can only be obtained by starting to trade as soon as τ occurs. We carefully study the behavior of local martingale deflators and consider no-arbitrage-type conditions weaker than no free lunch with vanishing risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We provide an English translation for the convenience of the reader: “For instance, S t may represent the price of some stock at time t, and τ is the optimal time to liquidate a position in that stock. Every speculator strives to know when τ will occur, without ever achieving this goal. Hence the name of an honest random variable”.

  2. We want to point out that analogous results can be obtained if in Assumption 2.6 the NFLVR condition is replaced with the weaker NA1 (or, equivalently, NUPBR) condition (in this regard, see also the discussion in Sect. 7). We also want to make the reader aware of the fact that Assumption 2.6 excludes the classical Black and Scholes [4] model with a non-zero drift coefficient on an infinite time horizon; see e.g. Example 1.7.6 in Karatzas and Shreve [28].

  3. Note that as in Corollary III.4.27 of Jacod and Shiryaev [22], the martingale representation result obtained in Theorem 6.2 of Jeanblanc and Song [23] for bounded \(\mathbb {G}\)-martingales extends naturally to all \(\mathbb {G}\)-local martingales. The representation (3.3) then follows by Lemma 3.3 together with Theorem 6.2 of Jeanblanc and Song [23] and Theorem I.4.61 of Jacod and Shiryaev [22].

  4. We are thankful to an Associate Editor pointing out to us this alternative arbitrage strategy.

References

  1. Ankirchner, S., Imkeller, P.: Finite utility on financial markets with asymmetric information and structure properties of the price dynamics. Ann. Inst. Henri Poincaré B, Probab. Stat. 41, 479–503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ansel, J.P., Stricker, C.: Couverture des actifs contingents et prix maximum. Ann. Inst. Henri Poincaré B, Probab. Stat. 30, 303–315 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Barlow, M.T.: Study of a filtration expanded to include an honest time. Z. Wahrscheinlichkeit. Verw. Geb. 44, 307–323 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  5. Cheridito, P., Nikeghbali, A., Platen, E.: Processes of class Sigma, last passage times, and drawdowns. SIAM J. Financ. Math. 3, 280–303 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choulli, T., Stricker, C.: Deux applications de la décomposition de Galtchouk–Kunita–Watanabe. In: Azéma, J., et al. (eds.) Séminaire de Probabilités XXX. Lecture Notes in Mathematics, vol. 1626, pp. 12–23. Springer, Berlin (1996)

    Chapter  Google Scholar 

  7. Chybiryakov, O.: Itô’s integrated formula for strict local martingales with jumps. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XL. Lecture Notes in Mathematics, vol. 1899, pp. 375–388. Springer, Berlin (2007)

    Chapter  Google Scholar 

  8. Coculescu, D., Jeanblanc, M., Nikeghbali, A.: Default times, no-arbitrage conditions and changes of probability measures. Finance Stoch. 16, 513–535 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delbaen, F., Schachermayer, W.: The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5, 926–945 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delbaen, F., Schachermayer, W.: A simple counter-example to several problems in the theory of asset pricing. Math. Finance 8, 1–11 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dellacherie, M., Maisonneuve, B., Meyer, P.-A.: Probabilités et Potentiel, Chapitres XVII–XXIV: Processus de Markov (fin), Compléments de Calcul Stochastique. Hermann, Paris (1992)

    Google Scholar 

  13. Elworthy, K.D., Li, X.M., Yor, M.: The importance of strict local martingales; applications to radial Ornstein–Uhlenbeck processes. Probab. Theory Relat. Fields 115, 325–355 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fontana, C.: Four essays in financial mathematics. Ph.D. thesis, Department of Mathematics, University of Padova (2012). (Available upon request from the first author)

  15. Fontana, C.: Weak and strong no-arbitrage conditions for continuous financial markets. (2013, preprint). Available at arXiv:1302.7192 [q-fin.PR]

  16. Grorud, A., Pontier, M.: Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance 4, 285–302 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hulley, H.: Strict local martingales in continuous financial market models. Ph.D. thesis, University of Technology Sydney (2009)

  18. Hulley, H., Schweizer, M.: M6—On minimal market models and minimal martingale measures. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance: Essays in Honour of Eckhard Platen, pp. 35–51. Springer, Berlin (2010)

    Chapter  Google Scholar 

  19. Imkeller, P.: Random times at which insiders can have free lunches. Stoch. Stoch. Rep. 74, 465–487 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Imkeller, P., Pontier, M., Weisz, F.: Free lunch and arbitrage possibilities in a financial market with an insider. Stoch. Process. Appl. 92, 103–130 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ingersoll, J.E.: Theory of Financial Decision Making. Rowman & Littlefield, Totowa (1987)

    Google Scholar 

  22. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren Math. Wiss., vol. 288. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  23. Jeanblanc, M., Song, S.: Martingale representation property in progressively enlarged filtrations. (2012, preprint). Available at arXiv:1203.1447 [math.PR]

  24. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, London (2009)

    Book  MATH  Google Scholar 

  25. Jeulin, T.: Semi-martingales et Grossissement d’une Filtration. Lecture Notes in Mathematics, vol. 833. Springer, Berlin (1980)

    MATH  Google Scholar 

  26. Kabanov, Y.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y., et al. (eds.) Statistics and Control of Stochastic Processes: The Liptser Festschrift, pp. 191–203. World Scientific, Singapore (1997)

    Google Scholar 

  27. Karatzas, I., Kardaras, K.: The numeraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  MATH  Google Scholar 

  29. Kardaras, C.: Finitely additive probabilities and the fundamental theorem of asset pricing. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance: Essays in Honour of Eckhard Platen, pp. 19–34. Springer, Berlin (2010)

    Chapter  Google Scholar 

  30. Kardaras, C.: Market viability via absence of arbitrage of the first kind. Finance Stoch. 16, 651–667 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kardaras, C.: On the characterisation of honest times that avoid all stopping times. Stoch. Process. Appl. 124, 373–384 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales and bubbles. (2013, preprint). Available at arXiv:1108.4177 [math.PR]

  33. Mansuy, R., Yor, M.: Random Times and Enlargements of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, vol. 1873. Springer, Berlin (2006)

    MATH  Google Scholar 

  34. Meyer, P.-A., Smythe, R.T., Walsh, J.B.: Birth and death of Markov processes. In: Le Cam, L.M., Neyman, J., Scott, E.L. (eds.) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Probability Theory, pp. 295–302. University of California Press, Berkeley (1972)

    Google Scholar 

  35. Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv. 3, 345–412 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nikeghbali, A., Platen, E.: On honest times in financial modeling. Working paper (2008). Available at arXiv:0808.2892 [q-fin.CP]

  37. Nikeghbali, A., Platen, E.: A reading guide for last passage times with financial applications in view. Finance Stoch. 17, 615–640 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nikeghbali, A., Yor, M.: Doob’s maximal identity, multiplicative decompositions and enlargements of filtrations. Ill. J. Math. 50, 791–814 (2006)

    MATH  MathSciNet  Google Scholar 

  39. Protter, P.: Stochastic Integration and Differential Equations, Version 2.1. Springer, Berlin (2005)

    Book  Google Scholar 

  40. Schweizer, M.: Martingale densities for general asset prices. J. Math. Econ. 21, 363–378 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Song, S.: Drift operator in a market affected by the expansion of information flow: a case study. (2012, preprint). Available at arXiv:1207.1662 [math.PR]

  43. Song, S.: An alternative proof of a result of Takaoka. (2013, preprint). Available at arXiv:1306.1062 [math.PR]

  44. Takaoka, K., Schweizer, M.: A note on the condition of no unbounded profit with bounded risk. Finance Stoch. 18, 393–405 (2014)

    Article  MathSciNet  Google Scholar 

  45. Zhang, H., Hadjiliadis, O.: Drawdowns and the speed of market crash. Methodol. Comput. Appl. Probab. 14, 739–752 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zwierz, J.: On existence of local martingale measures for insiders who can stop at honest times. Bull. Pol. Acad. Sci., Math. 55, 183–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Fédération Bancaire Française (within the chaire “Risque de Crédit” program) for generous financial support and to Anna Aksamit, Ashkan Nikeghbali, Marek Rutkowski, Marc Yor, two anonymous referees an Associate Editor and the Editor (Martin Schweizer) for valuable comments that helped to improve the contents and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Fontana.

Appendix

Appendix

1.1 Proof of Lemma 3.5

Due to the representation (3.4), for any \(\mathbb {F}\)-stopping time σ and any local martingale deflator L in \(\mathbb {G}\) on the time interval [0,στ], we can write

$$ \begin{aligned} E\left[L_{\sigma\wedge\tau}\right] &= E\left[L_{\sigma} \mathbf {1}_{\left\{\sigma<\tau\right\}}\right] +E\left[L_{\tau} \mathbf {1}_{\left\{\tau\leq\sigma\right\}}\right] \\ &= E\left[\frac{1}{N_{\sigma}}\exp\left(-\int_0^{\sigma} \frac {k_s}{N^*_s}\,dN^*_s\right) \mathbf {1}_{\left\{\sigma<\tau\right\}}\right] \\ &\quad\ \ {} +E\left[\frac{1}{N_{\tau}}\exp\left(-\int_0^{\tau} \frac {k_s}{N^*_s}\,dN^*_s\right)\left(1+k_{\tau}+\eta\right)\mathbf {1}_{\left\{\tau \leq\sigma\right\}}\right]. \end{aligned} $$
(A.1)

Let us first focus on the term on the second line of (A.1). Recall that τ<ν P-a.s. (see the proof of Proposition 3.1) and that \(Z=\left(Z_{t}\right)_{t\geq0}\) is the \(\mathbb {F}\)-optional projection of \((\mathbf {1}_{\left\{\tau>t\right\}})_{t\geq0}\) and \(Z_{\sigma}/N_{\sigma}=1/N^{*}_{\sigma}\) on the set {σ<ν} (see Lemma 2.10). Then we can write

$$ \begin{aligned} &E\left[\frac{1}{N_{\sigma}}\exp\left(-\int_0^{\sigma} \frac {k_s}{N^*_s}\,dN^*_s\right) \mathbf {1}_{\left\{\sigma<\tau\right\}}\right] \\ &\quad= E\left[\frac{1}{N_{\sigma}}\exp\left(-\int_0^{\sigma} \frac {k_s}{N^*_s}\,dN^*_s\right) \mathbf {1}_{\left\{\sigma<\tau\right\}}\mathbf {1}_{\left\{\sigma<\nu\right\}}\right ] \\ &\quad = E\left[\frac{1}{N_{\sigma}}\exp\left(-\int_0^{\sigma} \frac {k_s}{N^*_s}\,dN^*_s\right) Z_{\sigma} \mathbf {1}_{\left\{\sigma<\nu\right\}}\right] \\ &\quad= E\left[\frac{1}{N^*_{\sigma}}\exp\left(-\int_0^{\sigma} \frac {k_s}{N^*_s}\,dN^*_s\right) \mathbf {1}_{\left\{\sigma<\nu\right\}}\right] \\ &\quad = E\left[\exp\left(-\int_0^{\sigma} \frac{1+k_s}{N^*_s}\,dN^*_s\right) \mathbf {1}_{\left\{\sigma<\nu\right\}}\right]. \end{aligned} $$
(A.2)

Let us now compute more explicitly the second term on the right-hand side of (A.1). Recall that \(E[\eta|\mathcal {G}_{\tau-}]=0\) (see Jeanblanc and Song [23], Theorem 6.2). Recall also that since all \(\mathbb {F}\)-local martingales are continuous (by Assumption 2.8 together with the continuity of S), Corollary 2.4 of Nikeghbali and Yor [38] (see also Mansuy and Yor [33], Exercise 1.8) implies that the dual \(\mathbb {F}\)-predictable projection of the process (1 {τt}) t≥0 is given by \((\log N^{*}_{t} )_{t\geq0}\). Moreover, the measure \(dN^{*}_{s}\) is supported by the set \(\{ s\geq0:Z_{s}=1\}=\{s\geq0:N_{s}=N^{*}_{s}\}\). By first taking the \(\mathcal {G}_{\tau -}\)-conditional expectation and then recalling that \(\{\tau>\sigma\}\in \mathcal {G}_{\tau-}\) and that k τ is \(\mathcal {G}_{\tau-}\)-measurable (see Jacod and Shiryaev [22], Proposition I.2.4), we can write

$$ \begin{aligned} &E\left[\frac{1}{N_{\tau}}\exp\left(-\int_0^{\tau} \frac{k_s}{N^*_s}\, dN^*_s\right)\left(1+k_{\tau}+\eta\right)\mathbf {1}_{\left\{\tau\leq\sigma \right\}}\right] \\ &\quad= E\left[\frac{1}{N_{\tau}}\exp\left(-\int_0^{\tau} \frac {k_s}{N^*_s}\,dN^*_s\right)\left(1+k_{\tau}\right) \mathbf {1}_{\left\{\tau\leq\sigma\right\}}\right] \\ &\quad= E\left[\int_0^{\sigma} \frac{1}{N_s}\exp\left(-\int_0^s \frac {k_u}{N^*_u}\,dN^*_u\right)\left(1+k_s\right)\frac{1}{N^*_s}\, dN^*_s\right] \\ &\quad= E\left[\int_0^{\sigma} \frac{1}{N^*_s}\exp\left(-\int_0^s \frac {k_u}{N^*_u}\,dN^*_u\right)\left(1+k_s\right)\frac{1}{N^*_s}\, dN^*_s\right] \\ &\quad= E\left[\int_0^{\sigma} \exp\left(-\int_0^s \frac{1+k_u}{N^*_u}\, dN^*_u\right)\left(1+k_s\right)\frac{1}{N^*_s}\,dN^*_s\right] \\ &\quad= E\left[1-\exp\left(-\int_0^{\sigma} \frac{1+k_s}{N^*_s}\, dN^*_s\right)\right]. \end{aligned} $$
(A.3)

Equation (3.5) then follows by combining (A.2) and (A.3), using the fact that since τ<ν P-a.s., we have σ>τ on the set {σν}, and noting that the process N is constant after τ. In order to show that \(\int_{0}^{\tau} \frac{1+k_{s}}{N^{*}_{s}}\,dN^{*}_{s}>0\) P-a.s., it suffices to use the fact that 1+k τ >0 P-a.s. (see Remark 3.4) and note that

$$E\left[\frac{1+k_{\tau}}{N^*_{\tau}} \mathbf {1}_{\{\int_0^{\tau} \frac {1+k_s}{N^*_s}dN^*_s=0\}}\right] = E\left[\int_0^{\infty}\frac{1+k_s}{N^*_s}\mathbf {1}_{\{\int_0^s \frac {1+k_u}{N^*_u}dN^*_u=0\}}\frac{1}{N^*_s}\,dN^*_s\right] = 0, $$

which implies that \(\int_{0}^{\tau} \frac{1+k_{s}}{N^{*}_{s}}\,dN^{*}_{s}>0\) P-a.s. The last assertion follows from the fact that the nonnegative \(\mathbb {G}\)-local martingale L στ is a uniformly integrable \(\mathbb {G}\)-martingale if and only if \(E[L^{\sigma\wedge\tau}_{\infty }]=E[L_{\sigma\wedge\tau}]=1\). Due to (3.5), the latter holds if and only if P(νσ)=0.  □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, C., Jeanblanc, M. & Song, S. On arbitrages arising with honest times. Finance Stoch 18, 515–543 (2014). https://doi.org/10.1007/s00780-014-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0231-1

Keywords

Mathematics Subject Classification

JEL Classification

Navigation