Skip to main content
Log in

Weighted V@R and its Properties

  • Original Paper
  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The paper deals with the study of a coherent risk measure, which we call Weighted V@R. It is a risk measure of the form \(\rho_\mu(X)=\int\limits_{[0,1]}\hbox{TV}@\hbox{R}_{\uplambda}(\hbox{X}) \mu(\hbox{d}\uplambda),\) where μ is a probability measure on [0,1] and TV@R stands for Tail V@R. After investigating some basic properties of this risk measure, we apply the obtained results to the financial problems of pricing, optimization, and capital allocation. It turns out that, under some regularity conditions on μ, Weighted V@R possesses some nice properties that are not shared by Tail V@R. To put it briefly, Weighted V@R is “smoother” than Tail V@R. This allows one to say that Weighted V@R is one of the most important classes (or maybe the most important class) of coherent risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi C. (2002) Spectral measures of risk: a coherent representation of subjective risk aversion. J Bank Finance 26, 1505–1518

    Article  Google Scholar 

  2. Acerbi C. (2004). Coherent representations of subjective risk aversion. In: Szegö G. (eds). Risk measures for the 21st century. Wiley, New York, pp. 147–207

    Google Scholar 

  3. Acerbi C., Tasche D. (2002) On the coherence of expected shortfall. J Bank Finance 26, 1487–1503

    Article  Google Scholar 

  4. Artzner P., Delbaen F., Eber J.-M., Heath D. (1997) Thinking coherently. Risk 10(11): 68–71

    Google Scholar 

  5. Artzner P., Delbaen F., Eber J.-M., Heath D. (1999) Coherent measures of risk. Math Finance 9, 203–228

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakshi G., Kapadia N., Madan D. (2003) Stock return characteristics, skew laws, and the differential pricing of individual equity options. Rev Financ Stud 16, 101–143

    Article  Google Scholar 

  7. Banz R., Miller M. (1978) Prices of state-contingent claims: some estimates and applications. J Bus 51, 653–672

    Article  Google Scholar 

  8. Bernardo A., Ledoit O. (2000) Gain, loss, and asset pricing. J Polit Econ 108, 144–172

    Article  Google Scholar 

  9. Breeden D.T., Litzenberger R.H. (1978) Prices of state-contingent claims implicit in option prices. J Bus 51, 621–651

    Article  Google Scholar 

  10. Bliss R., Panigirtzoglou N. (2004) Recovering risk aversion from options. J Finance 59, 407–446

    Article  Google Scholar 

  11. Carlier G., Dana R.A. (2003) Core of convex distortions of a probability. J Econ Theory 113, 199–222

    Article  MathSciNet  MATH  Google Scholar 

  12. Carr P., Geman H., Madan D. (2001) Pricing and hedging in incomplete markets. J Financ Econ 62, 131–167

    Article  Google Scholar 

  13. Carr P., Geman H., Madan D. (2004). Pricing in incomplete markets: from absence of good deals to acceptable risk. In: Szegö G. (eds). Risk measures for the 21st century. Wiley, New York, pp. 451–474

    Google Scholar 

  14. Cherny, A.S. General arbitrage pricing model: probability approach. Lecture Notes in Mathematics (2006, in press) Available at: http://mech.math.msu.su/~cherny

  15. Cherny, A.S. Pricing with coherent risk. Preprint, available at: http://mech.math.msu.su/~cherny

  16. Cherny, A.S. Equilibrium with coherent risk. Preprint, available at: http://mech.math.msu.su/~cherny

  17. Cochrane J.H., Saá-Requejo J. (2000) Beyond arbitrage: good-deal asset price bounds in incomplete markets. J Polit Econ 108, 79–119

    Article  Google Scholar 

  18. Delbaen F. (2002). Coherent risk measures on general probability spaces. In: Sandmann K., Schönbucher P. (eds). Advances in Financee and Stochastics. Essays in honor of Dieter Sondermann. Springer, Berlin Heidelberg New York, pp. 1–37

    Google Scholar 

  19. Delbaen, F. Coherent monetary utility functions. Preprint, available at http://www.math.ethz.ch/~delbaen under the name “Pisa lecture notes”

  20. Denneberg D. (1990) Distorted probabilities and insurance premium. Methods Oper Res 52, 21–42

    MathSciNet  Google Scholar 

  21. Dowd, K. Spectral risk measures. Finance Eng News, electronic journal available at: http://www.fenews.com/fen42/risk-reward/risk-reward.htm

  22. Föllmer H., Schied A. (2004) Stochastic finance. An introduction in discrete time. 2nd edn. Walter de Gruyter, New York

    MATH  Google Scholar 

  23. Jackwerth J. (1999) Option-implied risk-neutral distributions and implied binomial trees: a literature review. J Derivatives 7, 66–82

    Article  Google Scholar 

  24. Jaschke S., Küchler U. (2001) Coherent risk measures and good deal bounds. Finance Stoch 5, 181–200

    Article  MathSciNet  MATH  Google Scholar 

  25. Kusuoka S. (2001) On law invariant coherent risk measures. Advances Math Econ 3, 83–95

    MathSciNet  Google Scholar 

  26. Liu, X., Shackleton, M., Taylor, S., Xu, X. Closed-form transformations from risk-neutral to real-world distributions. Preprint, available at: http://www.lancs.ac.uk/staff/afasjt/unpub.htm

  27. Markowitz H. (1959) Portfolio selection. Wiley, New York

    Google Scholar 

  28. Rockafellar R.T., Uryasev S. (2000) Optimization of conditional Value-At-Risk. J Risk 2, 21–41

    Google Scholar 

  29. Rockafellar, R.T., Uryasev, S., Zabarankin, M. Master funds in portfolio analysis with general deviation measures. J Bank Finance 30 (2006)

  30. Schied, A. Risk measures and robust optimization problems. Lecture notes of a minicourse held at the 8th symposium on probability and stochastic processes. Available on request at: http://www.math.tu-berlin.de/~schied

  31. Shaked, M., Shanthikumar, J. Stochastic orders and their applications. New York: Press 1994

  32. Staum J. (2004) Fundamental theorems of asset pricing for good deal bounds. Math Finance 14, 141–161

    Article  MathSciNet  MATH  Google Scholar 

  33. Szegö G. (2004). On the (non)-acceptance of innovations. In: Szegö G. (eds). Risk measures for the 21st century. Wiley, New York, pp. 1–9

    Google Scholar 

  34. Wang S. (1996) Premium calculation by transforming the layer premium density. ASTIN Bull 26, 71–92

    Article  Google Scholar 

  35. Wang S., Young V., Panjer H. (1997) Axiomatic characterization of insurance prices. Insur Math Econ 21, 173–183

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Cherny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherny, A.S. Weighted V@R and its Properties. Finance Stoch 10, 367–393 (2006). https://doi.org/10.1007/s00780-006-0009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-006-0009-1

Keywords

Mathematics Subject Classifications (2000)

JEL Classifications

Navigation