Skip to main content
Log in

Modeling and querying moving objects in networks

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Moving objects databases have become an important research issue in recent years. For modeling and querying moving objects, there exists a comprehensive framework of abstract data types to describe objects moving freely in the 2D plane, providing data types such as moving point or moving region. However, in many applications people or vehicles move along transportation networks. It makes a lot of sense to model the network explicitly and to describe movements relative to the network rather than unconstrained space, because then it is much easier to formulate in queries relationships between moving objects and the network. Moreover, such models can be better supported in indexing and query processing. In this paper, we extend the ADT approach by modeling networks explicitly and providing data types for static and moving network positions and regions. In a highway network, example entities corresponding to these data types are motels, construction areas, cars, and traffic jams. The network model is not too simplistic; it allows one to distinguish simple roads and divided highways and to describe the possible traversals of junctions precisely. The new types and operations are integrated seamlessly into the ADT framework to achieve a relatively simple, consistent and powerful overall model and query language for constrained and unconstrained movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: Proceedings of the 13th International Conference on Data Engineering (ICDE), pp. 422–432 (1997)

  2. Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost and imprecision in modeling the position of moving objects. In: Proceedings of the 14th International Conference on Data Engineering (ICDE), pp. 588–596 (1998)

  3. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving object databases: Issues and solutions. In: Proceedings of the 10th International Conference on Scientific and Statistical Database Management (SSDBM), pp. 111–122 (1998)

  4. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. Distributed and Parallel Databases 7(3), 257–387 (1999)

    Article  Google Scholar 

  5. Koubarakis, M., Pernici, B., Schek, H.J., Scholl, M., Theodoulidis, B., Tryfona, N., Sellis, T., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N., Manolopoulos, Y., Nardelli, E. (eds.): Spatio-temporal databases: The CHOROCHRONOS approach. Springer-Verlag, Lecture Notes in Computer Science 2520 (2003)

  6. Erwig, M., Güting, R.H., Schneider, M., Varzigiannis, M.: Spatio-temporal data types: An approach to modeling and querying moving objects in databases. Geolnformatica 3(3), 265–291 (1999)

    Google Scholar 

  7. Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems 25(1), 1–42 (2000)

    Article  Google Scholar 

  8. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 319–330 (2000)

  9. Cotelo Lema, J.A., Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: Algorithms for moving objects databases. The Computer Journal 46(6), 680–712 (2003)

    Article  MATH  Google Scholar 

  10. Grumbach, S., Rigaux, P., Segoufin, L.: The DEDALE system for complex spatial queries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 213–224 (1998)

  11. Rigaux, P., Scholl, M., Segoufin, L., Grumbach, S.: Building a constraint-based spatial database system: Model, languages, and implementation. Information Systems 28(6), 563–595 (2003)

    Article  MATH  Google Scholar 

  12. Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal data handling with constraints. Geolnformatica 5(1), 95–115 (2001)

    Article  MATH  Google Scholar 

  13. Chomicki, J., Revesz, P.: Constraint-based interoperability of spatio-temporal databases. In: Proceedings of the 5th International Symposium on Large Spatial Databases (SSD), pp. 142–161 (1997)

  14. Chomicki, J., Revesz, P.: A geometric framework for specifying spatiotemporal objects. In: Proceedings of the 6th International Workshop on Temporal Representation and Reasoning (TIME), pp. 41–46 (1999)

  15. Su, J., Xu, H., Ibarra, O.H.: Moving objects: Logical relationships and queries. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 3–19 (2001)

  16. Mokhtar, H., Su, J., Ibarra, O.H.: On moving object queries. In: Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pp. 188–198 (2002)

  17. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proceedings of the 19th Symposium on Principles of Database Systems, Dallas, Texas, pp. 175–186 (2000)

  18. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: Proceedings of the 26th Int. Conference on Very Large Data Bases (Cairo, Egypt), pp. 395–406 (2000)

  19. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Proceedings of the 8th International Conference on Extending Database Technology (EDBT, Prague, Czech Republic), pp. 251–268 (2002)

  20. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 79–96 (2001)

  21. Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Transactions on Database Systems 28(2), 101–139 (2003)

    Article  Google Scholar 

  22. Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity query for trajectory of mobile objects. In: Proceedings of the 4th International Conference on Mobile Data Management (MDM, Melbourne, Australia), pp. 63–77 (2003)

  23. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal datasets. In: Proceedings of the 6th Int. Symposium on Spatial Databases (Hong Kong, China), pp. 147–164 (1999)

  24. Frentzos, R.: Indexing moving objects on fixed networks. In: Proceedings of the 8th International Symposium on Spatial and Temporal Databases (SSTD), pp. 289–305 (2003)

  25. Pfoser, D., Jensen, C.S.: Indexing of network constrained moving objects. In: Proceedings of the 11th International Symposium on Advances in Geographic Information Systems (ACM-GIS), pp. 25–32 (2003)

  26. Shababi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for K-nearest neighbor search in moving objects databases. Geolnformatica 7(3), 255–273 (2003)

    Article  Google Scholar 

  27. Jensen, C.S., Kolavr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: Proceedings of the llth ACM Symposium on Advances in Geographic Information Systems (ACM-GIS, New Orleans, Louisiana), pp. 1–8 (2003)

  28. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: Proceedings of the 29th Conference on Very Large Databases (VLDB), pp. 790–801 (2003)

  29. Brinkhoff, T.: A framework for generating network-based moving objects. Geolnformatica 6(2), 153–180 (2002)

    Article  MATH  Google Scholar 

  30. Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Data modeling for mobile services in the real world. In: Proceedings of the 8th International Symposium on Spatial and Temporal Databases (SSTD), pp. 1–9 (2003)

  31. Scarponcini, P.: Generalized model for linear referencing in transportation. Geolnformatica 6(1), 35–55 (2002)

    Article  MATH  Google Scholar 

  32. Oracle Spatial Linear Referencing System User’s Guide: Release 8.1.6., Oracle Press (2000)

  33. Güting, R.H.: Second-order signature: A tool for specifying data models, query processing, and optimization. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 277–286 (1993)

  34. Chon, H.D., Agrawal, D., El Abbadi, A.: FATES: Finding a time dependent shortest path. In: Proceedings of the 4th International Conference on Mobile Data Management (MDM), pp. 165–180 (2003)

  35. Carey, M.J., Kossmann, D.: On saying “enough already!” in SQL. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 219–230 (1997)

  36. Dieker, S., Güting, R.H.: Plug and play with query algebras: Secondo. A generic DBMS development environment. In: Proceedings of the International Database Engineering and Applications Symposium (IDEAS), pp. 380–390 (2000)

  37. Güting, R.H., Behr, T., de Almeida, V.T., Ding, Z., Hoffmann, F., Spiekermann, M.: Secondo: An extensible DBMS architecture and prototype. Fernuniversität Hagen, Informatik-Report 313, (2004)

  38. Dieker, S., Güting, R.H.: Efficient handling of tuples with embedded large objects. Data & Knowledge Engineering 32(3), 247–269 (2000)

    Article  MATH  Google Scholar 

  39. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics, SSC- 4(2), 100–107 (1968)

    Article  Google Scholar 

  40. Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag (1982)

  41. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion B-Tree. VLDB Journal 5(4), 264–275 (1996)

    Google Scholar 

  42. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting recursion. In: Proceedings ACM SIGMOD, pp. 323–330 (1987)

  43. Gyssens, M., Paredaens, J., van Gucht, D.: A graph-oriented object database model. In: Proceedings ACM Conference on Principles of Database Systems (PODS), pp. 417–424 (1990)

  44. Mannino, M., Shapiro, L.: Extensions to query languages for graph traversal problems. IEEE Transactions on Knowledge and Data Engineering 2, 353–363 (1990)

    Article  Google Scholar 

  45. Erwig, M., Güting, R.H.: Explicit graphs in a functional model for spatial databases. IEEE Transactions on Knowledge and Data Engineering 6(5), 787–804 (1994)

    Article  Google Scholar 

  46. Güting, R.H.: Modeling and querying graphs in databases. In: Proceedings of the 20th International Conference on Very Large Databases, pp. 297–308 (1994)

  47. Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced traveller information systems. In: Proceedings of the 9th International Conference on Data Engineering (ICDE, Vienna, Austria), pp. 31–39 (1993)

  48. Shekhar, S., Liu, D.R.: CCAM: A connectivity-clustered access method for networks and network computations. IEEE Transactions on Knowledge and Data Engineering 9(1), 102–119 (1997)

    Article  Google Scholar 

  49. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Path queries for transportation networks: Dynamic reordering and sliding window paging techniques. In: Proceedings of the 4th ACM-GIS Conference, pp. 9–16 (1996)

  50. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Integrated query processing strategies for spatial path queries. In: Proceedings of the 13th International Conference on Data Engineering (ICDE, Birmingham, U.K.), pp. 477–486 (1997)

  51. Vazirgiannis, M., Wolfson, O.: A spatiotemporal query language for moving objects on road networks. In: Proceedings of the 7th International Symposium on Spatial and Temporal Databases (SSTD), pp. 20–35 (2001)

  52. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: Proceedings of the 29th International Conference on Very Large Databases (VLDB, Berlin, Germany), pp. 1019–1030 (2003)

  53. Speicys, L., Jensen, C.S., Kligys, A.: Computational data modeling for network-constrained moving objects. In: Proceedings of the llth ACM Symposium on Advances in Geographic Information Systems (ACM-GIS, New Orleans, Louisiana), pp. 118–125 (2003)

  54. Ding, Z., Güting, R.H.: Modeling temporally variable transportation networks. In: Proceedings of the 9th Int. Conference on Database Systems for Advanced Applications (DASFAA, Jeju Island, Korea), pp. 154–168 (2004)

  55. Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation networks. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM, Santorini Island, Greece), pp. 287–296 (2004)

  56. Almeida, V., Güting, R.H.: Indexing the trajectories of moving objects in networks. Geolnformatica 9(1), 33–60 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hartmut Güting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güting, R.H., de Almeida, V.T. & Ding, Z. Modeling and querying moving objects in networks. The VLDB Journal 15, 165–190 (2006). https://doi.org/10.1007/s00778-005-0152-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-005-0152-x

Keywords

Navigation