Skip to main content

Advertisement

Log in

hBMP-2 and hTGF-β1 expressed in implanted BMSCs synergistically promote the repairing of segmental bone defects

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Objective

To evaluate the effects of co-expressing hBMP-2 and hTGF-β1 in BMSCs (bone marrow-derived mesenchymal stem cells) on the repairing process of radial segmental defects in rats.

Methods

BMSCs were infected with a high titer recombinant adenovirus carrying hTGF-βl and/or hBMP-2 genes. Expression of exogenous genes in BMSCs was confirmed by RT-PCR and ELISA assays. In vitro effects of exogenous genes were assessed by MTT and ALP activity tests. A left radial defect model was created using 120 SD rats. Genetically modified or unmodified BMSCs were implanted with collagen sponge scaffolds into the 5-mm radial defect. The bone repair process was systematically monitored and evaluated by X-ray examinations, gross anatomic examinations, histological analyses, and biomechanical tests.

Results

Expression of hBMP-2 and hTGF-β1 showed synergistic effects on promoting BMSC proliferation and enhancing ALP activity in vitro. Bone repair assays showed that hBMP-2 and hTGF-β1 promoted the production of chondrocytes and osteoblasts. Implanted BMSCs transfected with both hBMP-2 and hTGF-β1 led to the best bone repair outcome.

Conclusion

hBMP-2 and hTGF-β1 can synergistically improve the bone repair process. Our results suggest a potential clinical value of combining hBMP-2 and hTGF-β1 in repairing bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Graham SM, Leonidou A, Aslam-Pervez N, Hamza A, Panteliadis P, Heliotis M, Mantalaris A, Tsiridis E. Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther. 2010;10(6):885–901.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng YH, Xiong W, Su K, Kuang SJ, Zhang ZG. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Exp Ther Med. 2013;5(6):1576–80.

    PubMed Central  PubMed  Google Scholar 

  3. Tsuchiya S, Hara K, Ikeno M, Okamoto Y, Hibi H, Ueda M. Rat bone marrow stromal cell-conditioned medium promotes early osseointegration of titanium implants. Int J Oral Maxillofac Implants. 2013;28(5):1360–9.

    Article  PubMed  Google Scholar 

  4. Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009;20(5):475–80.

    Article  CAS  PubMed  Google Scholar 

  5. Kim SG, Jeong JH, Che X, Park YT, Lee SW, Jung ES, Choe S, Choi JY. Reconstruction of radial bone defect using gelatin sponge and a BMP-2 combination graft. BMB Rep. 2013;46(6):328–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kaito T, Johnson J, Ellerman J, Tian H, Aydogan M, Chatsrinopkun M, Ngo S, Choi C, Wang JC. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Joint Surg Am. 2013;95(17):1612–9.

    Article  PubMed  Google Scholar 

  7. Wilson CG, Martin-Saavedra FM, Vilaboa N, Franceschi RT. Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J Dent Res. 2013;92(5):409–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bonewald LF, Mundy GR. Role of transforming growth factor beta in bone remodeling: a review. Connect Tissue Res. 1989;23(2–3):201–8.

    Article  CAS  PubMed  Google Scholar 

  9. Centrella M, McCarthy TL, Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem. 1987;262(6):2869–74.

    CAS  PubMed  Google Scholar 

  10. Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol. 1987;105(1):457–63.

    Article  CAS  PubMed  Google Scholar 

  11. Kuroda S, Sumner DR, Virdi AS. Effects of TGF-beta1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells in vitro and in vivo. J Tissue Eng. 2012;3(1):2041731412459745.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Toh WS, Liu H, Heng BC, Rufaihah AJ, Ye CP, Cao T. Combined effects of TGFbeta1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors. 2005;23(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Ahmad M, Gronowicz G. Effects of transforming growth factor-beta 1 (TGF-beta1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials. 2003;24(12):2013–20.

    Article  CAS  PubMed  Google Scholar 

  14. Datta P, Ghosh P, Ghosh K, Maity P, Samanta SK, Ghosh SK, Mohapatra PK, Chatterjee J, Dhara S. In vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N-methylene phosphonic chitosan nanofibers for bone regeneration. J Biomed Nanotechnol. 2013;9(5):870–9.

    Article  CAS  PubMed  Google Scholar 

  15. Giatsidis G, Dalla Venezia E, Bassetto F. The role of gene therapy in regenerative surgery: updated insights. Plast Reconstr Surg. 2013;131(6):1425–35.

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, Chao C, Hellmich MR, Ko TC. BMP2 inhibits TGF-beta-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol. 2013;304(9):G804–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gronroos E, Kingston IJ, Ramachandran A, Randall RA, Vizan P, Hill CS. Transforming growth factor beta inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes. Mol Cell Biol. 2012;32(14):2904–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987;18(2):213–25.

    CAS  PubMed  Google Scholar 

  20. Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GA. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg Br. 1986;68(4):635–42.

    CAS  PubMed  Google Scholar 

  21. Liang K, Xiang Z, Chen S, Cen S, Zhong G, Yi M, Huang F. Folded free vascularized fibular grafts for the treatment of subtrochanteric fractures complicated with segmental bone defects. J Trauma Acute Care Surg. 2012;72(5):1404–10.

    PubMed  Google Scholar 

  22. Patwardhan S, Shyam AK, Mody RA, Sancheti PK, Mehta R, Agrawat H. Reconstruction of bone defects after osteomyelitis with nonvascularized fibular graft: a retrospective study in twenty-six children. J Bone Joint Surg Am. 2013;95(9):e561–6 S1.

    Article  PubMed  Google Scholar 

  23. Trobisch PD, Ducoffe AR, Lonner BS, Errico TJ. Choosing fusion levels in adolescent idiopathic scoliosis. J Am Acad Orthop Surg. 2013;21(9):519–28.

    Article  PubMed  Google Scholar 

  24. Santoni BG, Pluhar GE, Motta T, Wheeler DL. Hollow calcium phosphate microcarriers for bone regeneration: in vitro osteoproduction and ex vivo mechanical assessment. Biomed Mater Eng. 2007;17(5):277–89.

    CAS  PubMed  Google Scholar 

  25. Wang CK, Ho ML, Wang GJ, Chang JK, Chen CH, Fu YC, Fu HH. Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone. Biomaterials. 2009;30(25):4178–86.

    Article  CAS  PubMed  Google Scholar 

  26. Forster Y, Gao W, Demmrich A, Hempel U, Hofbauer LC, Rammelt S. Monitoring of the first stages of bone healing with microdialysis. Acta Orthop. 2013;84(1):76–81.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the China Science and Technology Innovation Program for Youth.

Conflict of interest

All authors of this article certified that they have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghui Yin.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Chen, J., Chen, Z. et al. hBMP-2 and hTGF-β1 expressed in implanted BMSCs synergistically promote the repairing of segmental bone defects. J Orthop Sci 20, 717–727 (2015). https://doi.org/10.1007/s00776-015-0714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-015-0714-8

Keywords

Navigation