Skip to main content
Log in

NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product

  • Original Article
  • Published:
Journal of Orthopaedic Science

An Erratum to this article was published on 22 June 2013

Abstract

Background

Spinal fusion is among the most commonly performed orthopaedic procedures. Unfortunately, current treatments such as autologous bone grafting or recombinant proteins (BMP-2) have numerous clinical shortcomings. Here, we directly compare the efficacy of NELL-1, a novel osteoinductive growth factor, to two currently available treatments, (1) recombinant BMP-2 and (2) iliac crest bone grafting, in a spinal fusion model.

Methods

Twenty-six skeletally mature athymic rats underwent posterolateral spine fusion of L4/L5 vertebrae. Treatment groups included NELL-1 (10 and 50 μg) in a demineralized bone matrix (DBX), as compared to BMP-2 (90 μg) in an absorbable collagen sponge (ACS) or morselized iliac crest bone. Scaffolds without recombinant protein were used as controls. Animals were sacrificed at 4 weeks post-operative and fusion was assessed by manual palpation, radiography [high-resolution X-ray, micro-computed tomography (microCT)], histology (hematoxylin and eosin, Masson’s trichrome) and immunohistochemistry (osteocalcin).

Results

Results showed 100 % fusion in all NELL-1- and BMP-2-treated samples. In contrast, lower rates of fusion were observed in scaffold-only and bone graft treatment groups. MicroCT scans revealed radiographic evidence of fusion among spines treated with NELL-1. Bone bridging was also observed with BMP-2 treatment, but was accompanied by inner radiolucency, suggesting cyst-like bone formation. Histologically, NELL-1-treated grafts showed increased bone formation, endochondral ossification and vascularization. Although BMP-2 treated grafts exhibited increased bone formation and angiogenesis, numerous adipocytes were also observed.

Conclusion

NELL-1-based bone grafts are comparable to BMP-2 + ACS in spinal fusion efficacy. Histological differences were observed however, including robust endochondral ossification with NELL-1 treatment as compared to lipid-filled bone with BMP-2 treatment. These findings suggest NELL-1 based bone grafts show promise for future efforts in skeletal tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003;28:134–9.

    Article  Google Scholar 

  2. Li W, Lee M, Whang J, Siu RK, Zhang X, Liu C, Wu BM, Wang JC, Ting K, Soo C. Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Eng Part A. 2010;16:2861–70.

    Article  PubMed  CAS  Google Scholar 

  3. Ito Z, Matsuyama Y, Sakai Y, Imagama S, Wakao N, Ando K, Hirano K, Tauchi R, Muramoto A, Matsui H, Matsumoto T, Kanemura T, Yoshida G, Ishikawa Y, Ishiguro N. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine (Phila Pa 1976). 2010;35:E1101–5.

    Article  Google Scholar 

  4. Pinheiro AL, Santos NR, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, da Silva LN, Barbosa AF, Silveira L, Jr. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci. 2013;28(2):513–8.

    Google Scholar 

  5. Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS. Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine (Phila Pa 1976). 2008;33:2153–9.

    Article  Google Scholar 

  6. Mummaneni PV, Meyer SA, Wu JC. Biological approaches to spinal instrumentation and fusion in spinal deformity surgery. Clin Neurosurg. 2011;58:110–6.

    Article  PubMed  Google Scholar 

  7. Frost&Sullivan. Bone Morphogenetic Protein (BMP) Markets: Peering into the Future of Orthopedic Care. Frost&Sullivan. 2008.

  8. Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A. 2011;17(9–10):1389–99.

    Google Scholar 

  9. Balseiro S, Nottmeier EW. Vertebral osteolysis originating from subchondral cyst end plate defects in transforaminal lumbar interbody fusion using rhBMP-2. Report of two cases. Spine J. 2010;10:e6–10.

    Article  PubMed  Google Scholar 

  10. Boraiah S, Paul O, Hawkes D, Wickham M, Lorich DG. Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res. 2009;467:3257–62.

    Article  PubMed  Google Scholar 

  11. Schultz D. FDA public health notification: life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion. In: Health CfDaR, editor. 2008.

  12. Owens K, Glassman SD, Howard JM, Djurasovic M, Witten JL, Carreon LY. Perioperative complications with rhBMP-2 in transforaminal lumbar interbody fusion. Eur Spine J. 2011;20:612–7.

    Article  PubMed  Google Scholar 

  13. Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S, Longaker MT. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 1999;14:80–9.

    Article  PubMed  CAS  Google Scholar 

  14. Truong T, Zhang X, Pathmanathan D, Soo C, Ting K. Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res. 2007;22:7–18.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Ting K, Bessette CM, Culiat CT, Sung SJ, Lee H, Chen F, Shen J, Wang JJ, Kuroda S, Soo C. Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(±) mice. J Bone Miner Res. 2011;26:777–91.

    Article  PubMed  CAS  Google Scholar 

  16. Li W, Zara JN, Siu RK, Lee M, Aghaloo T, Zhang X, Wu BM, Gertzman AA, Ting K, Soo C. Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg. 2011;127:580–7.

    Article  PubMed  CAS  Google Scholar 

  17. Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007;7:50–60.

    Article  PubMed  Google Scholar 

  18. Siu RK, Lu SS, Li W, Whang J, McNeill G, Zhang X, Wu BM, Turner AS, Seim HB 3rd, Hoang P, Wang JC, Gertzman AA, Ting K, Soo C. Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A. 2011;17:1123–35.

    Article  PubMed  CAS  Google Scholar 

  19. Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21:7156–63.

    Article  PubMed  CAS  Google Scholar 

  20. Wildemann B, Kadow-Romacker A, Haas NP, Schmidmaier G. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A. 2007;81:437–42.

    PubMed  CAS  Google Scholar 

  21. FDA. InFUSE™ bone graft/LT-CAGE™ lumbar tapered fusion device. Summary of safety and effectiveness data; Premarket Approval Application P000058.

  22. National research council. Proceedings from the workshop on science-based assessment: accelerating product development of combination medical devices. The National Academies Press, Washington, DC, 2004.

  23. Miyazaki M, Morishita Y, He W, Hu M, Sintuu C, Hymanson HJ, Falakassa J, Tsumura H, Wang JC. A porcine collagen-derived matrix as a carrier for recombinant human bone morphogenetic protein-2 enhances spinal fusion in rats. Spine J. 2009;9:22–30.

    Article  PubMed  Google Scholar 

  24. Alanay A, Chen C, Lee S, Murray SS, Brochmann EJ, Miyazaki M, Napoli A, Wang JC. The adjunctive effect of a binding peptide on bone morphogenetic protein enhanced bone healing in a rodent model of spinal fusion. Spine (Phila Pa 1976). 2008;33:1709–13.

    Article  Google Scholar 

  25. Zhang X, Kuroda S, Carpenter D, Nishimura I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, Beanes S, Dang C, Vastardis H, Longaker M, Tanizawa K, Kanayama N, Saito N, Ting K. Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest. 2002;110:861–70.

    PubMed  CAS  Google Scholar 

  26. Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, Chen TM, Chan JY, Chen SG, Huang SM. Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg. 2012;69:656–62.

    Article  PubMed  CAS  Google Scholar 

  27. Xu Y, Hammerick KE, James AW, Carre AL, Leucht P, Giaccia AJ, Longaker MT. Inhibition of histone deacetylase activity in reduced oxygen environment enhances the osteogenesis of mouse adipose-derived stromal cells. Tissue Eng Part A. 2009;15:3697–707.

    Article  PubMed  CAS  Google Scholar 

  28. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem. 2011;286:12328–39.

    Article  PubMed  CAS  Google Scholar 

  29. Aydin H, Saracoglu M, Kerimoglu G, Kerimoglu S, Topbas M. Effects of human amniotic fluid on posterolateral spinal fusion: an experimental preliminary study. Eklem Hastalik Cerrahisi. 2011;22:166–71.

    PubMed  Google Scholar 

  30. Zhang H, Schulz TJ, Espinoza DO, Huang TL, Emanuelli B, Kristiansen K, Tseng YH. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol. 2010;30:4224–33.

    Article  PubMed  CAS  Google Scholar 

  31. James AW, Pang S, Askarinam A, Corselli M, Zara JN, Goyal R, Chang L, Pan A, Shen J, Yuan W, Stoker D, Zhang X, Adams JS, Ting K, Soo C. Additive effects of sonic hedgehog and nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev. 2012;21:2170–8.

    Article  PubMed  CAS  Google Scholar 

  32. Jensen ED, Pham L, Billington CJ Jr, Espe K, Carlson AE, Westendorf JJ, Petryk A, Gopalakrishnan R, Mansky K. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem. 2010;109:672–82.

    PubMed  CAS  Google Scholar 

  33. Alden TD, Pittman DD, Hankins GR, Beres EJ, Engh JA, Das S, Hudson SB, Kerns KM, Kallmes DF, Helm GA. In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector. Hum Gene Ther. 1999;10:2245–53.

    Article  PubMed  CAS  Google Scholar 

  34. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M, Hakeda Y. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone. 2000;27:479–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Translational Pathology Core Laboratory (TPCL) and the Surgical Pathology division of the UCLA Department of Pathology and Laboratory Medicine for technical assistance with histology. R.K.S. and A.W.J. were supported by T32 training fellowships (5T32DE007296-14).

Conflict of interest

Dr. X.Z is an inventor of Nell-1 related patents. Dr. X.Z. is a founder of Bone Biologics Inc. which sublicenses Nell-1 patents from the UC Regents, which also hold equity in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Dong.

Appendix

Appendix

See Fig. 7.

Fig. 7
figure 7

In vitro assays of osteogenic potential. a ALP (alkaline phosphatase) activity observed in human adipose derived mesenchymal stem cells (hASCs) supplemented with NELL-1 (300 ng/mL) or BMP-2 (150 ng/mL), after 5 days of differentiation. b Quantification of relative ALP staining. c Stromal cells (ST2) cells cultured with NELL-1 (800 ng/mL) or BMP-2 (50 ng/mL) quantified for expression of Runx2 by qRT-PCR (*P < 0.05)

About this article

Cite this article

Yuan, W., James, A.W., Asatrian, G. et al. NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product. J Orthop Sci 18, 646–657 (2013). https://doi.org/10.1007/s00776-013-0390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-013-0390-5

Keywords

Navigation