Skip to main content
Log in

Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-κB ligand in cells derived from osteoarthritic subchondral bone

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

The aim of this study was to clarify the significance of subchondral bone in the pathology of osteoarthritis (OA) by investigating the expression of inflammatory cytokines, proteases, and receptor activator of NF-κB ligand (RANKL)/receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) involved in cartilage degeneration.

Methods

Subchondral bone was obtained from 19 patients diagnosed with knee OA and 4 patients diagnosed with femoral neck fracture. Subchondral bone osteoblasts (SBOs) were isolated, and total RNA was extracted. Messenger RNA expression of inflammatory cytokines, proteases, and RANKL/RANK/OPG were analyzed using a real-time reverse transcription-polymerase chain reaction (RT-PCR).

Results

Real-time RT-PCR showed that mRNA expressions of interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13), and RANKL were significantly enhanced in OA SBOs compared to SBOs without OA. The expressions of these genes was greater in patients with severe cartilage damage than in those with mild cartilage damage. A high correlation between mRNA expression of IL-6 and that of MMP-13 was found in OA SBOs.

Conclusion

The increases in IL-6, MMP-13, and RANKL expression in OA SBOs suggest that in subchondral bone OA progression involves abnormal osseous tissue remodeling, which induces mechanical property changes. Cartilage degeneration in OA may also be due, at least in part, to IL-6 and MMP-13 produced by SBOs. Comprehensive research on these pathological features may lead to the development of more effective therapies for OA by administration of molecules that affect bone remodeling and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radin EL, Paul IL, Tolkoff MJ. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum 1970;13:400–405.

    Article  CAS  PubMed  Google Scholar 

  2. Bailey AJ, Mansell JP. Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 1997;43:296–304.

    Article  CAS  PubMed  Google Scholar 

  3. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop 1986:34–40.

  4. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001;44:585–594.

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum 2005;52:128–135.

    Article  CAS  PubMed  Google Scholar 

  6. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002;416:744–749.

    Article  CAS  PubMed  Google Scholar 

  7. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000;43:259–269.

    Article  CAS  PubMed  Google Scholar 

  8. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 2004;50:1193–1206.

    Article  CAS  PubMed  Google Scholar 

  9. Papaioannou NA, Triantafillopoulos IK, Khaldi L, Krallis N, Galanos A, Lyritis GP. Effect of calcitonin in early and late stages of experimentally induced osteoarthritis: a histomorphometric study. Osteoarthritis Cartilage 2007;15:386–395.

    Article  CAS  PubMed  Google Scholar 

  10. Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthritis Cartilage 2005;13:958–963.

    Article  CAS  PubMed  Google Scholar 

  11. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957;16:494–502.

    Article  CAS  PubMed  Google Scholar 

  12. Beresford JN, Gallagher JA, Gowen M, Couch M, Poser J, Wood DD, et al. The effects of monocyte-conditioned medium and interleukin 1 on the synthesis of collagenous and noncollagenous proteins by mouse bone and human bone cells in vitro. Biochim Biophys Acta 1984;801:58–65.

    CAS  PubMed  Google Scholar 

  13. Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, et al. Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci 1999;112(Pt 20):3519–3527.

    CAS  PubMed  Google Scholar 

  14. Inoue A, Takahashi KA, Arai Y, Tonomura H, Sakao K, Saito M, et al. The therapeutic effects of basic fibroblast growth factor contained in gelatin hydrogel microspheres on experimental osteoarthritis in the rabbit knee. Arthritis Rheum 2006;54:264–270.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Kubo T, Arai Y, Kitajima I, Takigawa M, Imanishi J, et al. Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor alpha mRNAs in a chondrocyte-like cell line. Ann Rheum Dis 1998;57:231–236.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun 2006;340:403–408.

    Article  CAS  PubMed  Google Scholar 

  17. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002;29:23–39.

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 1997;12:641–651.

    Article  CAS  PubMed  Google Scholar 

  19. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998;41:891–899.

    Article  CAS  PubMed  Google Scholar 

  20. Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N, et al. Can altered production of interleukin-1beta, interleukin-6, transforming growth factor-beta and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage 2002;10:491–500.

    Article  CAS  PubMed  Google Scholar 

  21. Tsangari H, Findlay DM, Kuliwaba JS, Atkins GJ, Fazzalari NL. Increased expression of IL-6 and RANK mRNA in human trabecular bone from fragility fracture of the femoral neck. Bone 2004;35:334–342.

    Article  CAS  PubMed  Google Scholar 

  22. Legendre F, Dudhia J, Pujol JP, Bogdanowicz P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes: association with a down-regulation of SOX9 expression. J Biol Chem 2003;278:2903–2912.

    Article  CAS  PubMed  Google Scholar 

  23. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997;99:1534–1545.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrari SL, Garnero P, Emond S, Montgomery H, Humphries SE, Greenspan SL. A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum 2001;44:196–201.

    Article  CAS  PubMed  Google Scholar 

  25. Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004;131:5883–5895.

    Article  CAS  PubMed  Google Scholar 

  26. Franchimont N, Rydziel S, Delany AM, Canalis E. Interleukin-6 and its soluble receptor cause a marked induction of collagenase 3 expression in rat osteoblast cultures. J Biol Chem 1997;272:12144–12150.

    Article  CAS  PubMed  Google Scholar 

  27. Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997;40:1282–1291.

    CAS  PubMed  Google Scholar 

  28. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE. Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes: this effect is mimicked by interleukin-6,-1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthritis Cartilage 2005;13:979–987.

    Article  CAS  PubMed  Google Scholar 

  29. Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM. The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 2001;16:1015–1027.

    Article  CAS  PubMed  Google Scholar 

  30. Legendre F, Bogdanowicz P, Boumediene K, Pujol JP. Role of interleukin 6 (IL-6)/IL-6R-induced signal tranducers and Signalrelated kinase in upregulation of matrix metallopoteinase and ADAMTS gene expression in articular chondrocytesJ Rheumatol 2005;32:1307–1316.

    PubMed  Google Scholar 

  31. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 2005;32:876–886.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sakao, K., Takahashi, K.A., Mazda, O. et al. Enhanced expression of interleukin-6, matrix metalloproteinase-13, and receptor activator of NF-κB ligand in cells derived from osteoarthritic subchondral bone. J Orthop Sci 13, 202–210 (2008). https://doi.org/10.1007/s00776-008-1227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-008-1227-5

Keywords

Navigation