Skip to main content
Log in

Calcium dysregulation potentiates wild-type myocilin misfolding: implications for glaucoma pathogenesis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Myocilin is secreted from trabecular meshwork cells to an eponymous extracellular matrix that is critical for maintaining intraocular pressure. Missense mutations found in the myocilin olfactomedin domain (OLF) lead to intracellular myocilin misfolding and are causative for the heritable form of early-onset glaucoma. The OLF domain contains a unique internal, hetero-dinuclear calcium site. Here, we tested the hypothesis that calcium dysregulation causes wild-type (WT) myocilin misfolding reminiscent of that observed for disease variants. Using two cellular models expressing WT myocilin, we show that the Ca2+ ATPase channel blocker thapsigargin inhibits WT myocilin secretion. Intracellular WT myocilin is at least partly insoluble and aggregated in the endoplasmic reticulum (ER), and stains positively with an amyloid dye. By comparing the effect of thapsigargin on WT myocilin to that on a de novo secretion-competent Ca2+-free variant D478S, we discern that non-secretion of WT myocilin is due initially to calcium dysregulation, and is potentiated further by resultant ER stress. In E. coli, depletion of calcium leads to recombinant expression of misfolded isolated WT OLF but the D478S variant is still produced as a folded monomer. Treatment of cells expressing a double mutant composed of D478S and either disease variants P370L or Y437H with thapsigargin promotes its misfolding and aggregation, demonstrating the limits of D478S to correct secretion defects. Taken together, the heterodinuclear calcium site is a liability for proper folding of myocilin. Our study suggests a molecular mechanism by which WT myocilin misfolding may contribute broadly to glaucoma-associated ER stress.

Graphical abstract

This study explores the effect of calcium depletion on myocilin olfactomedin domain folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donegan RK, Hill SE, Turnage KC, Orwig SD, Lieberman RL (2012) J Biol Chem 287:43370–43377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polansky JR, Fauss DJ, Chen P, Chen H, Lütjen-Drecoll E, Johnson D, Kurtz RM, Ma ZD, Bloom E, Nguyen TD (1997) Ophthalmologica 211:126–139

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR (1998) J Biol Chem 273:6341–6350

    Article  CAS  PubMed  Google Scholar 

  4. Stone EM, Fingert JH, Wallace LMA, Nguyen TD, Polansky JR, Sara LFS, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC (1997) Science 275:668–670

    Article  CAS  PubMed  Google Scholar 

  5. Kwon YH, Fingert JH, Kuehn MH, Alward WLM (2009) N Engl J Med 360:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarado J, Murphy C, Juster R (1984) Ophthalmology 91:564–579

    Article  CAS  PubMed  Google Scholar 

  7. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I (1993) Exp Eye Res 56:683–692

    Article  CAS  PubMed  Google Scholar 

  8. Peters JC, Bhattacharya S, Clark AF, Zode GS (2015) Invest Ophthalmol Vis Sci 56:3860–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sears NC, Boese EA, Miller MA, Fingert JH (2019) Exp Eye Res 186:107702

    Article  CAS  PubMed  Google Scholar 

  10. Wiggs JL, Pasquale LR (2017) Hum Mol Genet 26:R21–R27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scelsi HF, Barlow BM, Saccuzzo EG, Lieberman RL (2021) Hum Mutat 42:903–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donegan RK, Hill SE, Freeman DM, Nguyen E, Orwig SD, Turnage KC, Lieberman RL (2015) Hum Mol Genet 24:2111–2124

    Article  CAS  PubMed  Google Scholar 

  13. Stoilova D, Child A, Brice G, Desai T, Barsoum-Homsy M, Ozdemir N, Chevrette L, Adam MF, Garchon HJ, Pitts-Crick R, Sarfarazi M (1998) J Med Genet 35:989–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kennan AM, Mansergh FC, Fingert JH, Clark T, Ayuso C, Kenna PF, Humphries P, Farrar GJ (1998) J Med Genet 35:957–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campos-Mollo E, Sánchez-Sánchez F, López-Garrido MP, López-Sánchez E, López-Martínez F, Escribano J (2007) Mol Vis 13:1666–1673

    CAS  PubMed  Google Scholar 

  16. Hill SE, Kwon MS, Martin MD, Suntharalingam A, Hazel A, Dickey CA, Gumbart JC, Lieberman RL (2019) J Biol Chem 294:12717–12728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacobson N, Andrews M, Shepard AR, Nishimura D, Searby C, Fingert JH, Hageman G, Mullins R, Davidson BL, Kwon YH, Alward WL, Stone EM, Clark AF, Sheffield VC (2001) Hum Mol Genet 10:117–125

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Vollrath D (2004) Hum Mol Genet 13:1193–1204

    Article  CAS  PubMed  Google Scholar 

  19. Gobeil S, Rodrigue MA, Moisan S, Nguyen TD, Polansky JR, Morissette J, Raymond V (2004) Invest Ophthalmol Vis Sci 45:3560–3567

    Article  PubMed  Google Scholar 

  20. Suntharalingam A, Abisambra JF, O’Leary JC 3rd, Koren J 3rd, Zhang B, Joe MK, Blair LJ, Hill SE, Jinwal UK, Cockman M, Duerfeldt AS, Tomarev S, Blagg BS, Lieberman RL, Dickey CA (2012) J Biol Chem 287:40661–40669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yam GH, Gaplovska-Kysela K, Zuber C, Roth J (2007) Am J Pathol 170:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joe MK, Sohn S, Hur W, Moon Y, Choi YR, Kee C (2003) Biochem Biophys Res Commun 312:592–600

    Article  CAS  PubMed  Google Scholar 

  23. Orwig SD, Perry CW, Kim LY, Turnage KC, Zhang R, Vollrath D, Schmidt-Krey I, Lieberman RL (2012) J Mol Biol 421:242–255

    Article  CAS  PubMed  Google Scholar 

  24. Hill SE, Donegan RK, Lieberman RL (2014) J Mol Biol 426:921–935

    Article  CAS  PubMed  Google Scholar 

  25. Gould DB, Reedy M, Wilson LA, Smith RS, Johnson RL, John SW (2006) Mol Cell Biol 26:8427–8436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiggs JL, Vollrath D (2001) Arch Ophthalmol 119:1674–1678

    Article  CAS  PubMed  Google Scholar 

  27. Tallapragada DS, Bhaskar S, Chandak GR (2015) Front Genet 6:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Craig JE, Han X, Qassim A, Hassall M, Cooke-Bailey JN, Kinzy TG, Khawaja AP, An J, Marshall H, Gharahkhani P, Igo RP Jr, Graham SL, Healey PR, Ong JS, Zhou T, Siggs O, Law MH, Souzeau E, Ridge B, Hysi PG, Burdon KP, Mills RA, Landers J, Ruddle JB, Agar A, Galanopoulos A, White AJR, Willoughby CE, Andrew NH, Best S, Vincent AL, Goldberg I, Radford-Smith G, Martin NG, Montgomery GW, Vitart V, Hoehn R, Wojciechowski R, Jonas JB, Aung T, Pasquale LR, Cree AJ, Sivaprasad S, Vallabh NA, Consortium N, Eye UKB, Vision C, Viswanathan AC, Pasutto F, Haines JL, Klaver CCW, van Duijn CM, Casson RJ, Foster PJ, Khaw PT, Hammond CJ, Mackey DA, Mitchell P, Lotery AJ, Wiggs JL, Hewitt AW, MacGregor S (2020) Nat Genet 52:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stothert AR, Suntharalingam A, Huard DJ, Fontaine SN, Crowley VM, Mishra S, Blagg BS, Lieberman RL, Dickey CA (2014) Hum Mol Genet 23:6470–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Cold Spring Harb Perspect Biol 2011:3

    Google Scholar 

  31. Hill SE, Donegan RK, Nguyen E, Desai TM, Lieberman RL (2015) PLoS ONE 10:e0130888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zeng LC, Han ZG, Ma WJ (2005) FEBS Lett 579:5443–5453

    Article  CAS  PubMed  Google Scholar 

  33. Putignano V, Rosato A, Banci L, Andreini C (2018) Nucleic Acids Res 46:D459–D464

    Article  CAS  PubMed  Google Scholar 

  34. Liao J, Marinelli F, Lee C, Huang Y, Faraldo-Gomez JD, Jiang Y (2016) Nat Struct Mol Biol 23:590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joe MK, Tomarev SI (2010) Am J Pathol 176:2880–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lytton J, Westlin M, Hanley MR (1991) J Biol Chem 266:17067–17071

    Article  CAS  PubMed  Google Scholar 

  37. Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, Patton WF (2011) Cell Biochem Biophys 60:173–185

    Article  CAS  PubMed  Google Scholar 

  38. Burns JN, Orwig SD, Harris JL, Watkins JD, Vollrath D, Lieberman RL (2010) ACS Chem Biol 5:477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clapham DE (2007) Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  40. Berridge MJ, Bootman MD, Roderick HL (2003) Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  41. Braakman I, Bulleid NJ (2011) Annu Rev Biochem 80:71–99

    Article  CAS  PubMed  Google Scholar 

  42. Lieberman RL, Ma MT (2021) Acc Chem Res 54:2205–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oslowski CM, Urano F (2011) Methods Enzymol 490:71–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casanova D, Alemany P, Bofill JM, Alvarez S (2003) Chemistry 9:1281–1295

    Article  CAS  PubMed  Google Scholar 

  45. Kopec KO, Lupas AN (2013) PLoS ONE 8:e77074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson PJ, Kanemura S, Cao X, Bulleid NJ (2020) J Biol Chem 295:2438–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ricard CS, Tamm ER (2005) Exp Eye Res 81:501–502

    Article  CAS  PubMed  Google Scholar 

  48. Manders EMM, Verbeek FJ, Aten JA (1993) J Microsc 169:375–382

    Article  CAS  PubMed  Google Scholar 

  49. Bolte S, Cordelieres FP (2006) J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sara Bahri for technical assistance. This study was supported by NIH R01EY021205 and R21EY031093. EGS was supported in part by GAANN P200A210014, MDM was supported in part by 3R01EY021205-10S1, and MTM was supported by T32EY007092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel L. Lieberman.

Ethics declarations

Conflict of interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccuzzo, E.G., Martin, M.D., Hill, K.R. et al. Calcium dysregulation potentiates wild-type myocilin misfolding: implications for glaucoma pathogenesis. J Biol Inorg Chem 27, 553–564 (2022). https://doi.org/10.1007/s00775-022-01946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01946-3

Keywords

Navigation