Skip to main content
Log in

Syntheses and CO2 reduction activities of π-expanded/extended iron porphyrin complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The construction of molecular catalysts that are active toward CO2 reduction is of great significance for designing sustainable energy conversion systems. In this study, we aimed to develop catalysts for CO2 reduction by introducing aromatic substituents to the meso-positions of iron porphyrin complexes. Three novel iron porphyrin complexes with π-expanded substituents (5,10,15,20-tetrakis(pyren-1-yl)porphyrinato iron(III) chloride (Fe-Py)), π-extended substituents (5,10,15,20-tetrakis((1,1′-biphenyl)-4-yl)porphyrinato iron(III) chloride (Fe-PPh)) and π-expanded and extended substituents (5,10,15,20-tetrakis(4-(pyren-1-yl)phenyl)porphyrinato iron(III) chloride (Fe-PPy)) were successfully synthesized, and their physical properties were investigated by UV–vis absorption spectroscopy and electrochemical measurements under Ar in comparison with an iron complex with a basic framework, 5,10,15,20-tetrakis(phenyl)porphyrinato iron(III) chloride (Fe-Ph). Moreover, the catalytic activity of the complexes was studied by electrochemical measurements under CO2, and it is found that the complex with the π-expanded substituents exhibits the highest activity among these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the iron porphyrin complexes, there are several possible resonant forms to describe the electronic structure of the reduced species, and all resonant forms presumably contribute to the electronic structure of the complexes. In the case of Fe-Ph, previous reports suggested that the three electron reduced species should be best formulated as a Fe(0) complex, based on the results of UV–vis and resonance Raman spectroscopy and the studies on electrocatalytic reactions (Ref. [33, 51, 52]). Given that redox potentials of the newly synthesized complexes (Fe-Py, Fe-PPh and Fe-PPy) are quite similar to the reported complex, Fe-Ph, the nature of the redox processes and the electronic structure of the reduced species are probably similar. Therefore, we have assigned the redox processes of the newly synthesized complexes to be Fe(III)/Fe(II), Fe(II)/Fe(I) and Fe(I)/Fe(0) according to the previous reports.

  2. It should be noted that the concentration of CO2 in solution can be an important factor to affect the reaction rate. In our experiments, CO2-saturated solutions were employed in all the electrochemical measurements under a CO2 atmosphere although the exact concentration of CO2 in the 1,2-diclorobenzene solutions was unknown.

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray HB (2009) Nat Chem 1:7

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka K, Ooyama D (2002) Coord Chem Rev 226:211–218

    Article  CAS  Google Scholar 

  4. Savéant J-M (2008) Chem Rev 108:2348–2378

    Article  PubMed  Google Scholar 

  5. Takeda H, Ishitani O (2010) Coord Chem Rev 254:346–354

    Article  CAS  Google Scholar 

  6. Schneider J, Jia H, Muckermana JT, Fujita E (2012) Chem Soc Rev 41:2036–2051

    Article  CAS  PubMed  Google Scholar 

  7. Windle CD, Perutz RN (2012) Coord Chem Rev 256:2562–2570

    Article  CAS  Google Scholar 

  8. Kang P, Chen Z, Brookhart M, Meyer TJ (2015) Top Catal 58:30–45

    Article  CAS  Google Scholar 

  9. Beley M, Collin JP, Ruppert R, Sauvage JP (1986) J Am Chem Soc 108:7461–7467

    Article  CAS  PubMed  Google Scholar 

  10. Nagao H, Mizukawa T, Tanaka K (1994) Inorg Chem 33:3415–3420

    Article  CAS  Google Scholar 

  11. Chen Z, Chen C, Weinberg DR, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Chem Commun 47:12607–12609

    Article  CAS  Google Scholar 

  12. Smieja JM, Benson EE, Kumar B, Grice KA, Seu CS, Miller AJM, Mayer JM, Kubiak CP (2012) Proc Natl Acad Sci USA 109:15646–15650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keith JA, Grice KA, Kubiak CP, Carter EA (2013) J Am Chem Soc 135:15823–15829

    Article  CAS  PubMed  Google Scholar 

  14. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) J Am Chem Soc 135:11533–11536

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi K, Tanaka K (2014) Phys Chem Chem Phys 16:2240–2250

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Kang P, Zhang M-T, Meyer TJ (2014) Chem Commun 50:335–337

    Article  CAS  Google Scholar 

  17. Kang P, Zhang S, Meyer TJ, Brookhart M (2014) Angew Chem Int Ed 53:8709–8713

    Article  CAS  Google Scholar 

  18. Johnson BA, Agarwala H, White TA, Mijangos E, Maji S, Ott S (2016) Chem Eur J 22:14870–14880

    Article  CAS  PubMed  Google Scholar 

  19. Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) J Am Chem Soc 138:778–781

    Article  CAS  PubMed  Google Scholar 

  20. Sahara G, Kumagai H, Maeda K, Kaeffer N, Artero V, Higuchi M, Abe R, Ishitani O (2016) J Am Chem Soc 138:14152–14158

    Article  CAS  Google Scholar 

  21. Morria AJ, Meyer GJ, Fujita E (2009) Acc Chem Res 42:1983–1994

    Article  Google Scholar 

  22. Costentin C, Robert M, Savéant J-M (2013) Chem Soc Rev 42:2423–2436

    Article  CAS  PubMed  Google Scholar 

  23. Costentin C, Robert M, Savéant J-M (2015) Acc Chem Res 48:2996–3006

    Article  CAS  PubMed  Google Scholar 

  24. Grodkowski J, Behar D, Neta P, Hambright P (1997) J Phys Chem A 101:248–254

    Article  CAS  Google Scholar 

  25. Dhanasekaran T, Grodkowski J, Neta P, Hambright P, Fujita E (1999) J Phys Chem A 103:7742–7748

    Article  CAS  Google Scholar 

  26. Mohamed EA, Zahran ZN, Naruta Y (2015) Chem Commun 51:16900–16903

    Article  CAS  Google Scholar 

  27. Mondal B, Rana A, Sen P, Dey A (2015) J Am Chem Soc 137:11214–11217

    Article  CAS  PubMed  Google Scholar 

  28. Fukatsu A, Kondo M, Okabe Y, Masaoka S (2015) J Photochem Photobiol A Chem 313:143–148

    Article  CAS  Google Scholar 

  29. Hammouche M, Lexa D, Momenteau M, Savéant J-M (1991) J Am Chem Soc 113:8455–8466

    Article  CAS  Google Scholar 

  30. Costentin C, Drouet S, Robert M, Savéant J-M (2012) Science 338:90–94

    Article  CAS  PubMed  Google Scholar 

  31. Costentin C, Passard G, Robert M, Savéant J-M (2014) J Am Chem Soc 136:11821–11829

    Article  CAS  PubMed  Google Scholar 

  32. Bhugun I, Lexa D, Savéant J-M (1994) J Am Chem Soc 116:5015–5016

    Article  CAS  Google Scholar 

  33. Bhugun I, Lexa D, Savéant J-M (1996) J Am Chem Soc 118:1769–1776

    Article  CAS  Google Scholar 

  34. Bhugun I, Lexa D, Savéant J-M (1996) J Phys Chem 100:19981–19985

    Article  CAS  Google Scholar 

  35. Costentin C, Drouet S, Passard G, Robert M, Savéant J-M (2013) J Am Chem Soc 135:9023–9031

    Article  CAS  PubMed  Google Scholar 

  36. Adler AD, Longo FR, Shergalis W (1964) J Am Chem Soc 86:3145–3149

    Article  CAS  Google Scholar 

  37. Knör G (2001) Inorg Chem Commun 4:160–163

    Article  Google Scholar 

  38. Penon O, Marsico F, Santucci D, Rodriguez L, Amabilino DB, Pérez-García L (2012) J Porphyr Phthalocyanines 16:1293–1302

    Article  CAS  Google Scholar 

  39. Lindsey JS, Hsu HC, Schreiman IC (1986) Tetrahedron Lett 27:4969–4970

    Article  CAS  Google Scholar 

  40. Lindsey JS, Wagner RW (1989) J Org Chem 54:828–836

    Article  CAS  Google Scholar 

  41. Ishikawa R, Katoh K, Breedlove BK, Yamashita M (2012) Inorg Chem 51:9123–9131

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi H, Higuchi T, Kaizu Y, Osada H, Aoki M (1975) Bull Chem Soc Jpn 48:3137–3141

    Article  CAS  Google Scholar 

  43. Sun Z-C, She Y-B, Zhou Y, Song X-F, Li K (2011) Molecules 16:2960–2970

    Article  CAS  PubMed  Google Scholar 

  44. Gouterman M (1959) J Chem Phys 30:1139–1161

    Article  CAS  Google Scholar 

  45. Gouterman M (1961) J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  46. Stockmann A, Kurzawa J, Fritz N, Acar N, Schneider S, Daub J, Engl R, Clark T (2002) J Phys Chem A 106:7958–7970

    Article  CAS  Google Scholar 

  47. Raytchev M, Pandurski E, Buchvarov I, Modrakowski C, Fiebig T (2003) J Phys Chem A 107:4592–4600

    Article  CAS  Google Scholar 

  48. Weigel W, Rwttig W, Dekhtyar M, Modrakowski C, Beinhoff M, Schlüter AD (2003) J Phys Chem A 107:5941–5947

    Article  CAS  Google Scholar 

  49. Wu W, Wu W, Ji S, Guo H, Wang X, Zhao J (2011) Dyes Pigment 89:199–211

    Article  CAS  Google Scholar 

  50. Mack J, Stillman MJ (2003) The porphyrin handbook. In: Kadish K, Smith KM, Guilard R (eds) vol 16. Elsevier Science, San Diego, pp 43–116

    Google Scholar 

  51. Lexa D, Savéant J-M, Su K-B, Wang D-L (1988) J Am Chem Soc 110:7617–7625

    Article  CAS  Google Scholar 

  52. Anxolabéhère É (1994) Chottard G, Lexa D. New J Chem 289:889–899

    Google Scholar 

  53. Rountree ES, McCarthy BD, Eisenhart TT, Dempsey JL (2014) Inorg Chem 53:9983–10002

    Article  CAS  PubMed  Google Scholar 

  54. Okamura M, Kondo M, Kuga R, Kurashige Y, Yanai T, Hayami S, Praneeth VKK, Yoshida M, Yoneda K, Kawata S, Masaoka S (2016) Nature 530:465–468

    Article  CAS  PubMed  Google Scholar 

  55. Gennaro A, Isse AA, Vianello E (1990) J Electroanal Chem 289:203–215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 16H04125) (to S.M.), a Grant-in-Aid for Young Scientists (A) (No. 15H05480) (to M.K.), and a Grant-in-Aid for Challenging Exploratory Research (No. 26620160) (to S.M.) from the Japan Society for the Promotion of Science. This work was also supported by a Grant-in-Aid for Scientific Research on Innovative Areas “AnApple” (No. 15H00889) and ACT-C, JST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mio Kondo or Shigeyuki Masaoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okabe, Y., Lee, S.K., Kondo, M. et al. Syntheses and CO2 reduction activities of π-expanded/extended iron porphyrin complexes. J Biol Inorg Chem 22, 713–725 (2017). https://doi.org/10.1007/s00775-017-1438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1438-3

Keywords

Navigation