Skip to main content
Log in

Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two new ruthenium (II) polypyridyl complexes [Ru(MeIm)4(pip)]2+ (1) and [Ru(MeIm)4(4-npip)]2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV–Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells’ migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  2. Albers J, Chaudhry V, Donehower R, Cavaletti G (2014) Cochrane Database Syst Rev 3:CD005228

  3. Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Curr Pharm Des 9:2078–2089

    Article  CAS  PubMed  Google Scholar 

  4. Garber SB, Kingsbury JS, Gray BL, Hoveyda AH (2001) J Am Chem Soc 123:3186

    Article  CAS  Google Scholar 

  5. Kingsbury JS, Harrity JPA, Bonitatebus PJ, Hoveyda AH (1999) J Am Chem Soc 121:791–799

    Article  CAS  Google Scholar 

  6. Srishailam A, Kumar YP, Reddy PV, Nambigari N, Vuruputuri U, Singh SS, Satyanarayana S (2014) J Photochem Photobiol B 132:111–123

    Article  CAS  PubMed  Google Scholar 

  7. Zhenqiang W, Cohen SM (2011) Dissertations & Theses—Gradworks 38:1315–29

  8. Farha OK, Hupp JT (2010) Acc Chem Res 43:1166–1175

    Article  CAS  PubMed  Google Scholar 

  9. Fyfe MCT, Stoddart JF (1997) Acc Chem Res 30:393–401

    Article  CAS  Google Scholar 

  10. Norbert S, Shyam B (2011) Chem Rev 112:933–969

    Google Scholar 

  11. Ryan P, Farha OK, Broadbelt LJ, Snurr RQ (2011) AIChE J 57:1759–1766

    Article  CAS  Google Scholar 

  12. Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100:853–908

    Article  CAS  PubMed  Google Scholar 

  13. José C, Conor B, Jorunn S (2003) Juan Modesto CJ, Francesc L, Miguel. J Inorg Chem 42:8716–8727

    Article  Google Scholar 

  14. Mishra S, Pfalzgraf LG, Jeanneaub E, Chermettec H (2007) Dalton Trans 4:410–413

    Article  Google Scholar 

  15. Tangoulis V, Raptopoulou CP, Terzis A, Paschalidou S, Perlepes SP, Bakalbassis EG (1997) Inorg Chem 36:3996–4006

    Article  CAS  Google Scholar 

  16. Edfors O, Sandell M, Beek JJVD, Wilson SK, Börjesson PO (2000) Wireless Pers Commun 12:55–70

    Article  Google Scholar 

  17. García G, Atilhan M, Aparicio S (2015) Theor Chem Acc 134:1–13

    Article  Google Scholar 

  18. Wiberg KB, Stratmann RE, Frisch MJ (1998) Chem Phys Lett 297:60–64

    Article  CAS  Google Scholar 

  19. Liu D, Liu Y, Wang C, Shi S, Sun D, Gao F, Zhang Q, Liu J (2012) Chem Plus Chem 77:551–562

    CAS  Google Scholar 

  20. Mceachern MJ, Krauskopf A, Blackburn EH (2000) Annu Rev Genet 34:331–358

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Chen L, Liu Y, Yang Y, Chen T, Zheng W, Liu J, He Q-Y (2012) Biochimie 94:345–353

    Article  CAS  PubMed  Google Scholar 

  22. Chen LM, Liu J, Chen JC, Tan CP, Shi S, Zheng KC, Ji LN (2008) J Inorg Biochem 102:330–341

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Zheng W, Shi S, Tan C, Chen J, Zheng K, Ji L (2008) J Inorg Biochem 102:193–202

    Article  CAS  PubMed  Google Scholar 

  24. Sun DD, Liu Y, Liu D, Zhang R, Yang X, Liu J (2012) Chem Eur J 18:4285–4295

    Article  CAS  PubMed  Google Scholar 

  25. Sun DD, Wang WZ, Mao JW, Mei WJ, Liu J (2012) Bioorg Med Chem Lett 22:102–105

    Article  CAS  PubMed  Google Scholar 

  26. Sun DD, Zhang R, Yuan F, Liu D, Zhou Y, Liu J (2012) Dalton Trans 41:1734–1741

    Article  CAS  PubMed  Google Scholar 

  27. Avakyan VG, Gromak VV (2001) J Appl Spectrosc 68:401–409

    Article  CAS  Google Scholar 

  28. Yang W, Parr RG (1985) Proc Natl Acad Sci 82:6723–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  33. Juris A, Balzani V, Barigelletti F, Campagna S, Belser PL, Von Zelewsky A (1988) Coordin Chem Rev 84:85–277

  34. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  PubMed  Google Scholar 

  35. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  36. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  37. Schaftenaar G, Noordik JH (2000) Molden. J Comput Aid Mol Des 14:123–134

    Article  CAS  Google Scholar 

  38. Fantacci S, Angelis FD, Sgamellotti A, Marrone A, Re N (2005) J Am Chem Soc 127:14144–14145

    Article  CAS  PubMed  Google Scholar 

  39. Cantor CR, Warshaw MM, Shapiro H (1970) Biopolymers 9:1059–1077

    Article  CAS  PubMed  Google Scholar 

  40. Marmur J, Doty P (1961) J Mol Biol 3:585–594

    Article  CAS  PubMed  Google Scholar 

  41. Krupp G, Kuhne K, Tamm S, Klapper W, Heidorn K, Rott A, Parwaresch R (1997) Nucleic Acids Res 25:919–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim NW, Wu F (1997) Nucleic Acids Res 25:2595–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reed JE, Arnol AA, Neidle S, Vilar R (2006) J Am Chem Soc 128:5992–5993

    Article  CAS  PubMed  Google Scholar 

  44. Whiteman M, Dogra Y, Winyard PG, Armstrong JS (2009) Methods. Mol Biol 476:28–49

    Google Scholar 

  45. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Biochem Pharmacol 10:1572–1582

    Google Scholar 

  46. Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  47. Nair RB, Teng ES, Kirkland SL, Murphy CJ (1998) Inorg Chem 37:139–141

    Article  CAS  PubMed  Google Scholar 

  48. Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) J Am Chem Soc 115:4423–4428

    Article  CAS  Google Scholar 

  49. Clegg RM, Murchie AI, Zechel A, Carlberg C, Diekmann S, Lilley DM (1992) Biochemistry 31:4846–4856

    Article  CAS  PubMed  Google Scholar 

  50. Meade TJ, Kayyem JF (1995) Chem Int Ed 34:352–354

    Article  CAS  Google Scholar 

  51. Sogami M, Era S, Nagaoka S, Inouye H (1982) Int J Pept Protein Res 19:263–269

    Article  CAS  PubMed  Google Scholar 

  52. Debnath D, Kumar GS, Maiti M (1991) J Biomol Struct Dyn 9:61–79

    Article  CAS  PubMed  Google Scholar 

  53. Bergamo A, Sava G (2007) Dalton Trans 251:1267–1272

    Article  Google Scholar 

  54. Choi LMR, Kim NW, Zuo JJ, Robert Gerbing MA, Dan S, Lukens JN, Matthay KK, Seeger RC, Reynolds CP (2000) Med Pediatr Oncol 35:647–650

  55. Kroemer G, Reed JC (2000) Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  56. Pelicano H, Carney D, Peng H (2004) Drug Resist Update 7:97–110

    Article  CAS  Google Scholar 

  57. Turrens JF (2003) J Physiol London 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank our co-workers of the biotechnology center of Anhui Agriculture University for their technical supports. This work was supported by the National Natural Science Foundation of China (21401002), the Natural Science Foundation of Anhui Province, China (1508085QB37), the Youth Science Fund Key Project of Anhui Agricultural University (2013ZR011). This research leading to these results has also received funding from the Science Foundation of Young Teachers of Anhui Agricultural University (ZHSJ2013057), and the New Specialty of Biopharmaceutical Construction of Anhui Agricultural University (SJJD201313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyun Wang.

Additional information

D. Sun and Z. Mou contribute equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Mou, Z., Li, N. et al. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex. J Biol Inorg Chem 21, 945–956 (2016). https://doi.org/10.1007/s00775-016-1391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1391-6

Keywords

Navigation