Skip to main content
Log in

Theoretical studies on mechanisms of some Mo enzymes

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Modeling of molybdoenzymes began even before the knowledge of the three-dimensional structure of these enzymes. The theoretical and experimental knowledge on these enzymes is vast and newer investigation is regularly pursued to understand the electronic aspect of these proteins using computational means. The present review deals with some unique observation regarding the structure, function and reactivity of some models and native proteins in rationalizing the choice of diverse substrates in seemingly similar enzymes such as Nap (nitrate reductase) and Fdh (formate dehydrogenase) and the dual form of a specific substrate of an enzyme like trimethylamine N-oxide reductase (TAMOR) and providing the electronic reason for the inhibition in the oxypurinol-inhibited xanthine oxidase (XO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  2. Hille R (2002) Met Ions Biol Syst 39:187–226

    CAS  PubMed  Google Scholar 

  3. Zhang Y, Gladyshev VN (2008) J Mol Biol 379:881–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Turnlund JR (2002) Met Ions Biol Syst 39:727–739

    CAS  PubMed  Google Scholar 

  5. Feng C, Tollin G, Enemark JH (2007) Biochim Biophys Acta 1774:527–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mendel RR, Hänsch R (2002) J Exp Bot 53:1689–1698

    Article  CAS  PubMed  Google Scholar 

  7. Hille R (2002) Trends Biochem Sci 27:360–367

    Article  CAS  PubMed  Google Scholar 

  8. Bevers LE, Hagedoorn P-L, Hagen WR (2009) Coord Chem Rev 253:269–290

    Article  CAS  Google Scholar 

  9. da Silva JJRF, Williams RJP (2001) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  10. Kim J, Rees DC (1992) Science (New York, NY) 257:1677–1682

    Article  CAS  Google Scholar 

  11. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science (New York, NY) 334:974–977

    Article  CAS  Google Scholar 

  12. Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science (New York, NY) 334:940

    Article  CAS  Google Scholar 

  13. Lagarde F, Leroy M (2002) Met Ions Biol Syst 39:741–759

    CAS  PubMed  Google Scholar 

  14. Garattini E, Mendel R, Romão MJ, Wright R, Terao M (2003) Biochem J 372:15–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH, Einsle O (2007) Proc Natl Acad Sci 104:3073–3077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Majumdar A, Sarkar S (2011) Coord Chem Rev 255:1039–1054

    Article  CAS  Google Scholar 

  17. Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2840

    Article  CAS  PubMed  Google Scholar 

  18. Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, Schink B (1999) Eur J Biochem 264:176–182

    Article  CAS  PubMed  Google Scholar 

  19. Hille R, Mendel R (2011) Coord Chem Rev 255:991–992

    Article  CAS  Google Scholar 

  20. Liao R-Z, Yu J-G, Himo F (2011) J Inorg Biochem 105:927–936

    Article  CAS  PubMed  Google Scholar 

  21. Ha Y, Tenderholt AL, Holm RH, Hedman B, Hodgson KO, Solomon EI (2014) J Am Chem Soc 136:9094–9105

    Article  CAS  PubMed  Google Scholar 

  22. Metz S, Thiel W (2011) Coord Chem Rev 255:1085–1103

    Article  CAS  Google Scholar 

  23. Moula G, Bose M, Sarkar S (2013) Inorg Chem 52:5316–5327

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJG (2013) Coord Chem Rev 257:315–331

    Article  CAS  Google Scholar 

  25. Leopoldini M, Russo N, Toscano M, Dulak M, Wesolowski TA (2006) Chem Eur J 12:2532–2541

    Article  CAS  PubMed  Google Scholar 

  26. Najmudin S, González P, Trincão J, Coelho C, Mukhopadhyay A, Cerqueira NFSA, Romão C, Moura I, Moura JG, Brondino C, Romão M (2008) J Biol Inorg Chem 13:737–753

    Article  CAS  PubMed  Google Scholar 

  27. Cerqueira NMFSA, Gonzalez PJ, Brondino CD, Romão MJ, Romão CC, Moura I, Moura JJG (2009) J Comput Chem 30:2466–2484

    Article  CAS  PubMed  Google Scholar 

  28. Sparacino-Watkins C, Stolz JF, Basu P (2014) Chem Soc Rev 43:676–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Biaso F, Burlat B, Guigliarelli B (2012) Inorg Chem 51:3409–3419

    Article  CAS  PubMed  Google Scholar 

  30. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Chem Rev 112:4016–4093

    Article  CAS  PubMed  Google Scholar 

  31. Hofmann M (2009) J Biol Inorg Chem 14:1023–1035

    Article  CAS  PubMed  Google Scholar 

  32. Cerqueira NMFSA, Fernandes PA, Gonzalez PJ, Moura JJG, Ramos MJ (2013) Inorg Chem 52:10766–10772

    Article  CAS  PubMed  Google Scholar 

  33. Mota C, Rivas M, Brondino C, Moura I, Moura JG, González P, Cerqueira NFSA (2011) J Biol Inorg Chem 16:1255–1268

    Article  CAS  PubMed  Google Scholar 

  34. Blomberg MRA, Borowski T, Himo F, Liao R-Z, Siegbahn PEM (2014) Chem Rev 114:3601–3658

    Article  CAS  PubMed  Google Scholar 

  35. Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038

    Article  CAS  PubMed  Google Scholar 

  36. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Seo J, Kim E (2012) Inorg Chem 51:7951–7953

    Article  CAS  PubMed  Google Scholar 

  38. Coelho C, González PJ, Moura JG, Moura I, Trincão J, João Romão M (2011) J Mol Biol 408:932–948

    Article  CAS  PubMed  Google Scholar 

  39. Brondino CD, Rivas MG, Romão MJ, Moura JJG, Moura I (2007) Acc Chem Res 40:231

    Article  CAS  Google Scholar 

  40. Jepson BJN, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ (2007) J Biol Chem 282:6425–6437

    Article  CAS  PubMed  Google Scholar 

  41. Jepson BJN, Anderson LJ, Rubio LM, Taylor CJ, Butler CS, Flores E, Herrero A, Butt JN, Richardson DJ (2004) J Biol Chem 279:32212–32218

    Article  CAS  PubMed  Google Scholar 

  42. González P, Rivas M, Brondino C, Bursakov S, Moura I, Moura JG (2006) J Biol Inorg Chem 11:609–616

    Article  PubMed  Google Scholar 

  43. Frangioni B, Arnoux P, Sabaty M, Pignol D, Bertrand P, Guigliarelli B, Léger C (2004) J Am Chem Soc 126:1328–1329

    Article  CAS  PubMed  Google Scholar 

  44. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science (New York, NY) 275:1305–1308

    Article  CAS  Google Scholar 

  45. Raaijmakers H, Teixeira S, Dias J, Almendra M, Brondino C, Moura I, Moura JG, Romão M (2001) J Biol Inorg Chem 6:398–404

    Article  CAS  PubMed  Google Scholar 

  46. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ (2002) Structure 10:1261–1272

    Article  CAS  PubMed  Google Scholar 

  47. Moura JG, Brondino C, Trincão J, Romão M (2004) J Biol Inorg Chem 9:791–799

    Article  CAS  PubMed  Google Scholar 

  48. Raaijmakers HA, Romão M (2006) J Biol Inorg Chem 11:849–854

    Article  CAS  PubMed  Google Scholar 

  49. Czjzek M, Dos Santos J-P, Pommier J, Giordano G, Méjean V, Haser R (1998) J Mol Biol 284:435–447

    Article  CAS  PubMed  Google Scholar 

  50. Singh R, Haque I, Ahmad F (2005) J Biol Chem 280:11035–11042

    Article  CAS  PubMed  Google Scholar 

  51. Yü TA-F, Gutman AB (1964) Am J Med 37:885–898

    Article  Google Scholar 

  52. Okamoto K, Eger BT, Nishino T, Pai EF, Nishino T (2008) Nucleosides Nucleotides Nucleic Acids 27:888–893

    Article  CAS  PubMed  Google Scholar 

  53. Gutteridge S, Tanner SJ, Bray RC (1978) Biochem J 175:887–897

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Malthouse JP, Gutteridge S, Bray RC (1980) Biochem J 185:767–770

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Mitra J, Sarkar S (2013) Dalton Trans 42:3050–3058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all current and former members of their research groups who were involved in this work over the past several years. SS specially thanks the DST, N. Delhi India for a Ramanna Fellowship and BP acknowledges the support of a Senior Research Fellowship from the CSIR, N. Delhi, India. This work has been funded by FEDER/COMPETE and Fundação para a Ciência e a Tecnologia through grant no: IF/01310/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Sarkar.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, N.M.F.S.A., Pakhira, B. & Sarkar, S. Theoretical studies on mechanisms of some Mo enzymes. J Biol Inorg Chem 20, 323–335 (2015). https://doi.org/10.1007/s00775-015-1237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1237-7

Keywords

Navigation