Skip to main content
Log in

Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cu–Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 ) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N–H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brown RH Jr (1995) Cell 80:687–692

  2. Lilienfeld DE, Perl DP (1993) Neuroepidemiology 12:218–228

    Article  Google Scholar 

  3. Sorenson EJ, Stalker AP, Kurland LT, Windebank AJ (2002) Neurology 59:280–282

    Article  PubMed  Google Scholar 

  4. Roth-Kauffman M, Niebauer J (2012) Clin Rev 22:15–21

    Google Scholar 

  5. Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS (2004) Proc Natl Acad Sci USA 101:5976–5981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Das A, Plotkin SS (2013) J Mol Biol 425:850–874

    Article  CAS  PubMed  Google Scholar 

  7. Ray SS, Nowak RJ, Strokovich K, Brown RH Jr, Walz T, Lansbury PT Jr (2004) Biochemistry 43:4899–4905

  8. Bond JM, Bannister JV, Bannnister WH (1991) Free Radic Res Commun 12–3:545–551

    Article  Google Scholar 

  9. Goodsell DS, Olson AJ (2000) Annu Rev Biophys Biomol Struct 29:105–153

    Article  CAS  PubMed  Google Scholar 

  10. Kim J, Lee H, Lee JH, Kwon DY, Genovesio A, Fenistein D, Oqier A, Brondani V, Grailhe R (2014) J Biol Chem 289:15094–15103

    Article  CAS  PubMed  Google Scholar 

  11. Muneeswaran G, Kartheeswaran S, Muthukumar K, Dharmaraj CD, Karunakaran C (2014) Biophys Chem 185:70–78

    Article  CAS  PubMed  Google Scholar 

  12. Strange RW, Antonyuk S, Hough MA, Doucette PA, Rodriguez JA, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS (2003) J Mol Biol 328:877–891

    Article  CAS  PubMed  Google Scholar 

  13. Parge HE, Hallewell RA, Tainer JA (1992) Proc Natl Acad Sci USA 89:6109–6113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Galaleldeen A, Strange RW, Whitson LJ, Antonyuk SV, Narayana N, Taylor AB, Schuermann JP, Holloway SP, Hasnain SS, Hart PJ (2009) Arch Biochem Biophys 492:40–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. DiDonato M, Craig L, Huff ME, Thayer MM, Cardoso RM, Kassmann CJ, Lo TP, Bruns CK, Powers ET, Kelly JW, Getzoff ED, Tainer JA (2003) J Mol Biol 332:601–615

    Article  CAS  PubMed  Google Scholar 

  16. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

  17. Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC, Borchelt DR (1999) Hum Mol Genet 8:1451–1460

    Article  CAS  PubMed  Google Scholar 

  18. Byström R (2009) SOD1’s law: an investigation of ALS provoking properties on SOD1. Department of Chemistry, Umea University, Sweden

    Google Scholar 

  19. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  20. Bader RFW (1990) Atoms in molecules - a quantum theory. Oxford University Press, Oxford

  21. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  22. Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:289–300

    Article  CAS  Google Scholar 

  23. Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory, 1st edn, vol 7. Wiley, New York, pp 1–379

  24. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985–1993

    Article  CAS  PubMed  Google Scholar 

  25. Fandin˜o RG, Castedo L, Granja JR, Va´zquez SA (2010) J Phys Chem B 114:4973–4983

  26. Kim C, Kim SJ, Lee Y, Kim Y (2000) Bull Korean Chem Soc 21:510–514

    CAS  Google Scholar 

  27. Boys SF, Bernardi F (1970) Mol Phys 19:5–53

    Article  Google Scholar 

  28. Gaussian 09, Frisch Æ, Clemente FR, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford, CT

  29. Kaminski GA, Friensner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  30. Ponder JW, Case DA (2003) Adv Protein Chem 66:27–85

    Article  CAS  PubMed  Google Scholar 

  31. Shrivastava IH, Sansom MS (2000) Biophys J 78:557–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Berendsen HJC, Postma JPM, van Gunsteren WF, Herman J (1981) Intermol Forces 14:331–342

    Article  CAS  Google Scholar 

  33. Moore PB, Lopez CF, Klein ML (2001) Biophys J 81:2484–2494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

  35. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8594

    Article  CAS  Google Scholar 

  36. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  37. Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA (1995) JAm ChemSoc 117:4193–4194

    Article  CAS  Google Scholar 

  38. Khare SD, Caplow M, Dokholyan NV (2006) Amyloid 13:226–235

    Article  CAS  PubMed  Google Scholar 

  39. Marytyna GJ, Tobia DJ, Klein M (1994) J Chem Phys 101:4177–4189

  40. Van der Spoel D, Lindahl E, Hess B, Van Buuren AR, Apol E, Meulenhoff PJ, Tieleman D P, Sijbers ALTM, Feenstra KA, Van Drunen R, Berendsen HJC (2010) Gromacs user manual version 4.5.4. http://www.gromacs.org

  41. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

  42. Lindberg MJ, Normark J, Holmgren A, Oliveberg M (2004) Proc Natl Acad Sci USA 101:15893–15898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Anderson PM, Sim KB, Xin WW, Kiely R, O’Neil G, Ravits J, Pioro E, Harati Y, Brower RD, Levine JS, Heinicke HU, Seltzer W, Boss M, Brown RH Jr (2003) Amyotrop Lateral Scler Other Motor Neuron Disord 4:62–73

    Article  Google Scholar 

  44. Lindberg MJ, Tibell L, Oliveberg M (2002) Proc Natl Acad Sci USA 99:16607–16612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lindberg MJ, Bystrom R, Boknas N, Anderson PM, Oliveberg M (2005) Proc Natl Acad Sci USA 102:9754–9759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Qualls DA, Prudencio M, Roberts BLT, Crosby K, Brown H, Borchelt DR (2013) Mol Neurodegener 8:1–15

    Article  Google Scholar 

  47. Kolandaivel P, Nirmala V (2004) J Mol Struct 694:33–38

    Article  CAS  Google Scholar 

  48. Yuan XX, Wang YF, Wang X, Chen W, Fossey JS, Wong NB (2010) Chem Cent J 4:1–15

    Article  Google Scholar 

  49. Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, Hansen JC, Hart PJ (2004) J Biol Chem 279:54558–54566

    Article  CAS  PubMed  Google Scholar 

  50. Zhang G, Li X, Li Y, Chen D (2013) Mol Phys 111:3276–3282

    Article  CAS  Google Scholar 

  51. Zhang G, Xiwen L, Yan L, Chen D (2013) Mol Phys 111:3276–3282

    Article  CAS  Google Scholar 

  52. He JY, Long ZW, Zhang JS (2011) J Struct Chem 52:1057–1062

    Article  CAS  Google Scholar 

  53. Holm L, Sander C (1993) J Mol Biol 233:123–138

    Article  CAS  PubMed  Google Scholar 

  54. Guardia E, Marti J, Tarres LG, Laria D (2005) J Mol Liq 117:63–67

    Article  CAS  Google Scholar 

  55. Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaite L, Marklund SL, Logan DT, Oliveberg M (2013) Proc Natl Acad Sci USA 110:3829–3834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shaw BF, Durazo A, Nersissian AM, Whitelegge JP, Faull KF, Valentine JS (2006) J Biol Chem 281:18167–18176

    Article  CAS  PubMed  Google Scholar 

  57. Byström R, Anderson PM, Gröbner G, Oliveberg M (2010) J Biol Chem 285:19544–19552

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to HPCF Centre (High Performance Computing Facility) of DST Government of India at Hyderabad for allowing us to use the facility, where most of the calculations have been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kolandaivel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthana, S.P., Kolandaivel, P. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study. J Biol Inorg Chem 20, 509–522 (2015). https://doi.org/10.1007/s00775-014-1235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1235-1

Keywords

Navigation