Skip to main content
Log in

Di- and polynuclear silver(I) saccharinate complexes of tertiary diphosphane ligands: synthesis, structures, in vitro DNA binding, and antibacterial and anticancer properties

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(μ-sac)2(μ-dppp)] n (3), and [Ag(sac)(μ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clement JL, Jarrett PS (1994) Met Based Drugs 1:467–482

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wright JB, Lam K, Hansen D, Burrell RE (1999) Am J Infect Control 27:344–350

    CAS  PubMed  Google Scholar 

  3. Silver S (2003) FEMS Microbiol Rev 27:341–353

    CAS  PubMed  Google Scholar 

  4. Klasen HJ (2000) Burns 26:117–130

    CAS  PubMed  Google Scholar 

  5. Fox CL (1968) Arch Surg 96:184–188

    PubMed  Google Scholar 

  6. Fox CL, Modak SM (1974) Antimicrob Agents Chemother 5:582–588

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Fox CL (1983) Surg Gynecol Obstet 157:82–88

    PubMed  Google Scholar 

  8. Fox CL (1985) Burns Incl Therm Inj 11:306–307

    PubMed  Google Scholar 

  9. Deshpande LM, Chopade BA (1994) Biometals 7:49–56

    CAS  PubMed  Google Scholar 

  10. de Gracia GG (2001) Burns 27:67–74

    PubMed  Google Scholar 

  11. White RJ, Cooper R (2005) Wounds UK 1:51–61

    Google Scholar 

  12. Cook DS, Turner MF (1975) J Chem Soc Perkin Trans 2 1021–1025

    Google Scholar 

  13. Baenziger NC, Struss AW (1976) Inorg Chem 15:1807–1809

    CAS  Google Scholar 

  14. Thurman R, Gerba CP (1988) Crit Rev Environ Control 18:295–315

    CAS  Google Scholar 

  15. McDonnell G, Russell AD (1999) Clin Microbiol Rev 12:147–179

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Percival SL, Bowler PG, Russell D (2005) J Hosp Infect 60:1–7

    CAS  PubMed  Google Scholar 

  17. Kasuga NC, Yoshikawa R, Sakai Y, Nomiya K (2012) Inorg Chem 51:1640–1647

    CAS  PubMed  Google Scholar 

  18. Liau SY, Read DC, Pugh WJ, Furr JR, Russel AD (1997) Lett Appl Microbiol 25:279–283

    CAS  PubMed  Google Scholar 

  19. Nomiya K, Noguchi R, Oda M (2000) Inorg Chim Acta 298:24–32

    CAS  Google Scholar 

  20. Nomiya K, Noguchi R, Shigeta T, Kondoh Y, Tsuda K, Ohsawa K, Kasuga NC, Oda M (2000) Bull Chem Soc Jpn 3:1143–1152

    Google Scholar 

  21. Nomiya K, Yokohama H (2002) J Chem Soc Dalton Trans 2483–2490

  22. Baran EJ, Yilmaz VT (2006) Coord Chem Rev 250:1980–1999

    CAS  Google Scholar 

  23. Cavicchioli M, Massabni AC, Castellano EE, Sabeh LPB, Costa-Neto CM (2007) Inorg Chim Acta 360:3055–3060

    CAS  Google Scholar 

  24. Maiore L, Cinellu MA, Michelucci E, Moneti G, Nobili S, Landini I, Mini E, Guerri A, Gabbiani C, Messori L (2011) J Inorg Biochem 105:348–355

    CAS  PubMed  Google Scholar 

  25. Guney E, Yilmaz VT, Ari F, Buyukgungor O, Ulukaya E (2011) Polyhedron 30:114–122

    CAS  Google Scholar 

  26. Ulukaya E, Ari F, Dimas K, Sarimahmut M, Guney E, Sakellaridis N, Yilmaz VT (2011) J Cancer Res Clin Oncol 137:1425–1434

    CAS  PubMed  Google Scholar 

  27. Ulukaya E, Ari F, Dimas K, Ikitimur EI, Guney E, Yilmaz VT (2011) Eur J Med Chem 46:4957–4963

    CAS  PubMed  Google Scholar 

  28. Coskun MD, Ari F, Oral AY, Sarimahmut M, Kutlu HM, Yilmaz VT, Ulukaya E (2013) Bioorg Med Chem 21:4698–4705

    CAS  PubMed  Google Scholar 

  29. Ari F, Aztopal N, Icsel C, Yilmaz VT, Guney E, Buyukgungor O, Ulukaya E (2013) Bioorg Med Chem 21:6427–6434

    Google Scholar 

  30. Icsel C, Yilmaz VT (2013) DNA Cell Biol 32:165–172

    CAS  PubMed  Google Scholar 

  31. Banti CN, Giannoulis AD, Kourkoumelis N, Owczarzak AM, Poyraz M, Kubicki M, Charalabopoulos K, Hadjikakou SK (2012) Metallomics 4:545–560

    CAS  PubMed  Google Scholar 

  32. Banti CN, Hadjikakou SK (2013) Metallomics 5:569–596

    CAS  PubMed  Google Scholar 

  33. Ng SW (1995) Z Kristallogr 210:206–209

    CAS  Google Scholar 

  34. Cavicchioli M, Leite CQF, Sato DN, Massabni AC (2007) Arch Pharm Chem Life Sci 340:538–542

    CAS  Google Scholar 

  35. Yesilel OZ, Kastas G, Darcan C, Ilker I, Pasaoglu H (2010) Inorg Chim Acta 363:1849–1858

    CAS  Google Scholar 

  36. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    CAS  Google Scholar 

  37. Spek AL (2003) J Appl Crystallogr 36:7–13

    CAS  Google Scholar 

  38. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051–3058

    CAS  Google Scholar 

  39. Stern O, Volmer M (1919) Z Phys 20:183–188

    CAS  Google Scholar 

  40. Lee M, Rhodes AL, Wyatt MD, Forrow S, Hartley JA (1993) Biochemistry 32:4237–4245

    CAS  PubMed  Google Scholar 

  41. Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Sens Actuators B 119:199–208

    CAS  Google Scholar 

  42. Clinical Laboratory Standards Institute (2003) Approved standard M7-A6. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. Clinical Laboratory Standards Institute, Wayne

    Google Scholar 

  43. Geary WJ (1971) Coord Chem Rev 7:81–122

    CAS  Google Scholar 

  44. Effendy, Hanna JV, Marchetti F, Martini D, Pettinari C, Pettinari R, Skelton BW, White AH (2004) Inorg Chim Acta 357:1523–1537

  45. Di Nicola C, Effendy, Fazaroh F, Pettinari C, Skelton BW, Somers N, White AH (2005) Inorg Chim Acta 358:720–734

  46. Effendy, Di Nicola C, Nitiatmodjo M, Pettinari C, Skelton BW, White AH (2005) Inorg Chim Acta 358:735–747

    Google Scholar 

  47. Effendy, Di Nicola C, Pettinari C, Pizzabiocca A, Skelton BW, Somers N, White AH (2006) Inorg Chim Acta 359:64–80

    Google Scholar 

  48. Pettinari C, Ngoune J, Marinelli A, Skelton BW, White AH (2009) Inorg Chim Acta 362:3225–3230

    CAS  Google Scholar 

  49. Zhang L, Lu X-Q, Zhang Q, Chen C-L, Kang B-S (2005) Transit Metal Chem 30:76–81

    CAS  Google Scholar 

  50. Daasch LW, Smith DC (1951) Anal Chem 23:853–868

    CAS  Google Scholar 

  51. Corbridge DEC (1956) J Appl Chem 6:546–465

    Google Scholar 

  52. Westermark G, Person I (1998) Colloids Surf A 144:149–166

    CAS  Google Scholar 

  53. Meijboom R, Bowen RJ, Berners-Price SJ (2009) Coord Chem Rev 253:325–342

    CAS  Google Scholar 

  54. James SL (2009) Chem Soc Rev 38:1744–1758

    CAS  PubMed  Google Scholar 

  55. Hamamci S, Yilmaz VT, Harrison WTA (2005) Z Naturforsch 60b:978–983

    Google Scholar 

  56. Hamamci S, Yilmaz VT, Harrison WTA, Thöne C (2005) Solid State Sci 7:423–429

    CAS  Google Scholar 

  57. Yilmaz VT, Hamamci S, Kazak C (2005) Z Anorg Allg Chem 631:1961–1965

    CAS  Google Scholar 

  58. Hamamci S, Yilmaz VT, Harrison WTA (2005) Struct Chem 16:379–383

    CAS  Google Scholar 

  59. Yilmaz VT, Hamamci S, Buyukgungor O (2006) Z Naturforsch 61b:189–193

    Google Scholar 

  60. Yilmaz VT, Hamamci S, Gumus S, Buyukgungor O (2006) J Mol Struct 794:142–147

    CAS  Google Scholar 

  61. Gumus S, Hamamci S, Yilmaz VT, Kazak C (2007) J Mol Struct 828:181–187

    CAS  Google Scholar 

  62. Yilmaz VT, Senel E, Guney E, Kazak C (2008) Inorg Chem Commun 11:1330–1333

    CAS  Google Scholar 

  63. Hamamci S, Yilmaz VT, Gumus S, Buyukgungor O (2008) Struct Chem 19:123–129

    CAS  Google Scholar 

  64. Guney E, Yilmaz VT, Buyukgungor O (2010) Polyhedron 29:1437–1442

    CAS  Google Scholar 

  65. Ilker I, Yesilel OZ, Gunay G, Buyukgungor O (2009) J Organomet Chem 694:4178–4184

    CAS  Google Scholar 

  66. Yesilel OZ, Gunay G, Buyukgungor O (2011) Polyhedron 30:364–371

    CAS  Google Scholar 

  67. Szlyk E, Szymanska I, Surdykowski A, Glowiak T, Wojtezak A, Golinski A (2003) Dalton Trans 3404–3410

  68. Lobbia GG, Pellei M, Pettinari C, Santini C, Skelton BW, White AH (2005) Polyhedron 24:181–187

    CAS  Google Scholar 

  69. Di Nicola C, Effendy, Pettinari C, Skelton BW, Somers N, White AH (2006) Inorg Chim Acta 359: 53–63

  70. Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2007) Inorg Chim Acta 360:1388–1413

  71. Effendy, Marchetti F, Pettinari C, Pettinari R, Skelton BW, White AH (2007) Inorg Chim Acta 360:1414–1423

  72. Teo P, Koh LL, Hor TSA (2008) Inorg Chem 47:9561–9568

    CAS  PubMed  Google Scholar 

  73. Liu Y-L, Han L-J, Qiao G-R, Yang M, Zhang Q, Wang J-G, Zhan S-Z (2012) Synth React Inorg Met Org Nano Met Chem 42:183–189

    CAS  Google Scholar 

  74. Ruan B, Tian Y, Zhou H, Wu J, Liu Z, Zhu C, Yang J, Zhu H (2009) J Organomet Chem 694:2883–2887

    CAS  Google Scholar 

  75. Wang C-F, Peng S-M (1996) Polyhedron 15:1853–1858

    CAS  Google Scholar 

  76. Jones PG, Ahrens B (1998) Chem Commun 2307–2308

  77. Su W, Hong M, Cao R, Chen J, Wu D, Liu H, Lu J (1998) Inorg Chim Acta 267:313–317

    CAS  Google Scholar 

  78. Lobana TS, Paul S, Castineiras A (1999) J Chem Soc Dalton Trans 1819–1824

  79. Liu CW, Liaw B-J (2000) Inorg Chem 39:1329–1332

    CAS  PubMed  Google Scholar 

  80. Youm K-T, Kim Y, Do Y, Jun M-J (2000) Inorg Chim Acta 310:203–209

    CAS  Google Scholar 

  81. Zhou W-B, Dong Z-C, Song J-L, Zeng H-Y, Cao R, Guo G-C, Huang J-S, Li J (2002) J Clust Sci 13:119–136

    CAS  Google Scholar 

  82. Park YJ, Do Y, Kim KM, Choi M-G, Jun M-J, Kim C (2002) Polyhedron 21:33–37

    CAS  Google Scholar 

  83. Zhang L, Zhang H-X, Chen C-L, Deng L-R, Kang B-S (2003) Inorg Chim Acta 355:49–56

    CAS  Google Scholar 

  84. Fournier E, Lebrun F, Drouin M, Decken A, Harvey PD (2004) Inorg Chem 43:3127–3135

    CAS  PubMed  Google Scholar 

  85. Liu B, Zhou G-W, Fu M-L, Xu L, Guo G-C, Huang J-S (2004) Bull Korean Chem Soc 25:1937–1940

    CAS  Google Scholar 

  86. Di Nicola C, Ngoune J, Effendy, Pettinari C, Skelton BW, White AH (2007) Inorg Chim Acta 360:2935–2943

  87. Ma Z, Sun J, Liu B, Hua M, Xing Y (2008) Acta Crystallogr Sect E 64:m269

    CAS  Google Scholar 

  88. Lo KM, Ng SW (2008) Acta Crystallogr Sect E 64:m717

    CAS  Google Scholar 

  89. Maa Z, Xing Y, Yang M, Hua M, Liu B, Guedes da Silva MFC, Pombeiro AJL (2009) Inorg Chim Acta 362:2921–2926

    Google Scholar 

  90. Lv Q-Y, Song Y-Q, Zhan S-Z, Cai J, He J-P (2009) J Coord Chem 62:1536–1543

    CAS  Google Scholar 

  91. Liu CW, Sarkar B, Liaw B-J, Lin Y-W, Lobana TS, Wang J-C (2009) J Organomet Chem 694:2134–2141

    CAS  Google Scholar 

  92. Song L-L, Cui L-N, Jina Q-H, Zhangb C-L (2010) Acta Crystallogr Sect E 66:m1237–m1238

    CAS  Google Scholar 

  93. Jin Q-H, Song L-L, Hu K-Y, Zhou L-L, Zhang Y-Y, Wang R (2010) Inorg Chem Commun 13:62–65

    CAS  Google Scholar 

  94. Song L-L, Jin Q-H, Cui L-N, Zhang C-L (2010) Inorg Chim Acta 363:2425–2429

    CAS  Google Scholar 

  95. Chao H-Y, Wu L, Li C-L, Lu W, Liu L, Feng X-L (2011) Z Anorg Allg Chem 637:1533–1538

    CAS  Google Scholar 

  96. Yang X, Huang X, Qiu Q-M, Jina Q-H, Zhang C-L (2012) Acta Crystallogr Sect E 68:m1367

    CAS  Google Scholar 

  97. Yilmaz VT, Hamamci S, Thöne C (2004) Z Anorg Allg Chem 630:1641–1644

    CAS  Google Scholar 

  98. Yilmaz VT, Hamamci S, Harrison WTA, Thöne C (2005) Polyhedron 24:693–699

    CAS  Google Scholar 

  99. Yilmaz VT, Hamamci S, Buyukgungor O (2008) Polyhedron 27:1761–1766

    CAS  Google Scholar 

  100. Prajapati R, Kimura K, Mishra L (2009) Inorg Chim Acta 362:3219–3224

    CAS  Google Scholar 

  101. Fournier E, Sicard S, Decken A, Harvey PD (2004) Inorg Chem 43:1491–1501

    CAS  PubMed  Google Scholar 

  102. Aslanidis P, Cox PJ, Divanidis S, Karagiannidis P (2004) Inorg Chim Acta 357:2677–2686

    CAS  Google Scholar 

  103. Bao F, Lu X-Q, Ng SW (2005) Acta Crystallogr Sect E 61:m2637–m2638

    CAS  Google Scholar 

  104. Zhang L, Lu X-Q, Chen C-L, Tan H-Y, Zhang H-X, Kang B-S (2005) Cryst Growth Des 5:283–287

    CAS  Google Scholar 

  105. Cingolani A, Effendy, Pettinari C, Skelton BW, White AH (2006) Inorg Chim Acta 359:2170–2177

  106. De Menezes Vicenti JR, Burrow RA (2007) Acta Crystallogr Sect C 63:m88–m90

    Google Scholar 

  107. Wang X-C, Wu Y-L, You X-L (2008) Acta Crystallogr Sect E 64:m981

    CAS  Google Scholar 

  108. Teo YY, Lo KM, Ng SW (2008) Acta Crystallogr Sect E 64:m819

    CAS  Google Scholar 

  109. Dennehy M, Quinzani OV, Mandolesi SD, Burrow RA (2011) J Mol Struct 998:119–125

    CAS  Google Scholar 

  110. Ruina Y, Yimin H, Baoyu X, Dungmei W, Douman J (1996) J Trans Met Chem 21:28–30

    CAS  Google Scholar 

  111. Cui L-N, Li Z-F, Jin Q-H, Xin X-L, Zhang C-L (2012) Inorg Chem Commun 20:126–130

    CAS  Google Scholar 

  112. Zhang L, Chen C, Zhang Q, Zhang H, Kang B (2003) Acta Crystallogr Sect E 59:m536–m537

    CAS  Google Scholar 

  113. Lepecq J-B, Paoletti C (1967) J Mol Biol 27:87–106

    CAS  PubMed  Google Scholar 

  114. Richards AD, Rodger A (2007) Chem Soc Rev 36:471–483

    CAS  PubMed  Google Scholar 

  115. Nomiya K, Kondoh Y, Onoue K, Kasuga NC, Nagano H, Oda M, Sudoh T, Sakuma S (1995) J Inorg Biochem 58:255–267

    CAS  Google Scholar 

  116. Noguchi R, Sugie A, Okamoto Y, Hara A, Nomiya K (2005) Bull Chem Soc Jpn 78:1953–1962

    CAS  Google Scholar 

  117. Berners-Price SJ, Johnson RK, Giovenella AJ, Faucette LF, Mirabelli CK, Sadler PJ (1988) J Inorg Biochem 33:285–295

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support received from Uludag University [project UAP(F)-2011/36] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veysel T. Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, V.T., Gocmen, E., Icsel, C. et al. Di- and polynuclear silver(I) saccharinate complexes of tertiary diphosphane ligands: synthesis, structures, in vitro DNA binding, and antibacterial and anticancer properties. J Biol Inorg Chem 19, 29–44 (2014). https://doi.org/10.1007/s00775-013-1052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1052-y

Keywords

Navigation