Skip to main content
Log in

Metal–drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium–ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes—cis,fac-[RuIICl2(DMSO)3(KTZ)] (1) and cis-[RuIICl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2′-bipyridine)—and four organometallic compounds—[RuII6-p-cymene)Cl2(KTZ)] (3), [RuII6-p-cymene)(en)(KTZ)][BF4]2 (4), [RuII6-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [RuII6-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with RuII in compounds 35 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 35 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

acac:

Acetylacetonate

bipy:

2,2′-Bipyridine

CTZ:

Clotrimazole

DMSO:

Dimethyl sulfoxide

en:

Ethylenediamine

KTZ:

Ketoconazole

LD50 :

Median lethal dose

SBI:

Sterol biosynthesis inhibitor

THF:

Tetrahydrofuran

References

  1. WHO (2010) Control of leishmaniases. World Health Organization, Geneva

  2. den Boer M, Argaw D, Jannin J, Alvar J (2011) Clin Microbiol Infect 17:1471–1477. doi:10.1111/j.1469-0691.2011.03635.x

    Article  Google Scholar 

  3. Barrett MP, Burchmore RJS, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S (2003) Lancet 362:1469–1480

    Article  PubMed  Google Scholar 

  4. WHO (2002) Control of Chagas disease. World Health Organization, Geneva

  5. Dias JC, Silveira AC, Schofield CJ (2002) Mem Inst Oswaldo Cruz 97:603–612

    Article  PubMed  CAS  Google Scholar 

  6. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR (2008) PLoS Negl Trop Dis 2:e300. doi:10.1371/journal.pntd.0000300

    Article  PubMed  Google Scholar 

  7. Kirchhoff LV (2011) Adv Parasitol 75:1–18. doi:10.1016/B978-0-12-385863-4.00001-0

    Article  PubMed  Google Scholar 

  8. Sánchez-Delgado RA, Anzellotti A (2004) Mini Rev Med Chem 4:23–30. doi:10.2174/1389557043487493

    Article  PubMed  Google Scholar 

  9. Sánchez-Delgado RA, Anzellotti A, Suárez L (2004) Met Ions Biol Syst 41:379–419

    PubMed  Google Scholar 

  10. Croft SL, Barrett MP, Urbina JA (2005) Trends Parasitol 21:508–512. doi:10.1016/j.pt.2005.08.026

    Article  PubMed  CAS  Google Scholar 

  11. Urbina JA (2009) Mem Inst Oswaldo Cruz 104:311–318. doi:10.1590/s0074-02762009000900041

    Article  PubMed  CAS  Google Scholar 

  12. Urbina JA (2010) Drugs Fut 5:409–419

    Article  Google Scholar 

  13. Urbina JA (2010) Acta Trop 115:55–68. doi:10.1016/j.actatropica.2009.10.023

    Article  PubMed  Google Scholar 

  14. Urbina JA, Docampo R (2003) Trends Parasitol 19:495–501

    Article  PubMed  CAS  Google Scholar 

  15. de Souza W, Fernandes Rodrigues JC (2009) Interdiscip Perspect Infect Dis 2009:642502

  16. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Mol Biochem Parasitol 126:129–142

    Article  PubMed  CAS  Google Scholar 

  17. Sánchez-Delgado RA, Lazardi K, Rincon L, Urbina JA, Hubert AJ, Noels AN (1993) J Med Chem 36:2041–2043. doi:10.1021/jm00066a014

    Article  PubMed  Google Scholar 

  18. Sánchez-Delgado RA, Navarro M, Lazardi K, Atencio R, Capparelli M, Vargas F, Urbina JA, Bouillez A, Noels AF, Masi D (1998) Inorg Chim Acta 275–276:528–540. doi:10.1016/s0020-1693(98)00114-5

    Article  Google Scholar 

  19. Navarro M, Cisneros-Fajardo EJ, Lehmann T, Sánchez-Delgado RA, Atencio R, Silva P, Lira R, Urbina JA (2001) Inorg Chem 40:6879–6884. doi:10.1021/ic0103087

    Article  PubMed  CAS  Google Scholar 

  20. Navarro M, Lehmann T, Cisneros-Fajardo EJ, Fuentes A, Sánchez-Delgado RA, Silva P, Urbina JA (2000) Polyhedron 19:2319–2325. doi:10.1016/s0277-5387(00)00495-2

    Article  CAS  Google Scholar 

  21. Otero L, Vieites M, Boiani L, Denicola A, Rigol C, Opazo L, Olea-Azar C, Maya JD, Morello A, Krauth-Siegel RL, Piro OE, Castellano E, González M, Gambino D, Cerecetto H (2006) J Med Chem 49:3322–3331. doi:10.1021/jm0512241

    Article  PubMed  CAS  Google Scholar 

  22. Vieites M, Otero L, Santos D, Olea-Azar C, Norambuena E, Aguirre G, Cerecetto H, González M, Kemmerling U, Morello A, Diego Maya J, Gambino D (2009) J Inorg Biochem 103:411–418. doi:10.1016/j.jinorgbio.2008.12.004

    Google Scholar 

  23. Vieites M, Otero L, Santos D, Toloza J, Figueroa R, Norambuena E, Olea-Azar C, Aguirre G, Cerecetto H, González M, Morello A, Maya JD, Garat B, Gambino D (2008) J Inorg Biochem 102:1033–1043. doi:10.1016/j.jinorgbio.2007.12.005

    Article  PubMed  CAS  Google Scholar 

  24. Demoro B, Sarniguet C, Sánchez-Delgado R, Rossi M, Liebowitz D, Caruso F, Olea-Azar C, Moreno V, Medeiros A, Comini MA, Otero L, Gambino D (2012) Dalton Trans 41:1534–1543. doi:10.1039/C1DT11519G

    Article  PubMed  CAS  Google Scholar 

  25. Merlino A, Otero L, Gambino D, Coitiño EL (2011) Eur J Med Chem 46:2639–2651. doi:10.1016/j.ejmech.2011.03.046

    Article  PubMed  CAS  Google Scholar 

  26. Navarro M, Gabbiani C, Messori L, Gambino D (2010) Drug Discov Today 15:1070–1078. doi:10.1016/j.drudis.2010.10.005

    Article  PubMed  CAS  Google Scholar 

  27. Navarro M, Hernandez C, Colmenares I, Hernandez P, Fernandez M, Sierraalta A, Marchan E (2007) J Inorg Biochem 101:111–116. doi:10.1016/j.jinorgbio.2006.08.015

    Article  PubMed  CAS  Google Scholar 

  28. Navarro M, Cisneros-Fajardo EJ, Marchan E (2006) Arzneimittelforschung 56:600–604

    PubMed  CAS  Google Scholar 

  29. Fricker SP, Mosi RM, Cameron BR, Baird I, Zhu Y, Anastassov V, Cox J, Doyle PS, Hansell E, Lau G, Langille J, Olsen M, Qin L, Skerlj R, Wong RSY, Santucci Z, McKerrow JH (2008) J Inorg Biochem 102:1839–1845. doi:10.1016/j.jinorgbio.2008.05.010

    Article  PubMed  CAS  Google Scholar 

  30. Martínez A, Carreon T, Iniguez E, Anzellotti A, Sánchez A, Tyan M, Sattler A, Herrera L, Maldonado RA, Sánchez-Delgado RA (2012) J Med Chem 55:3867–3877. doi:10.1021/jm300070h

    Article  PubMed  Google Scholar 

  31. Bennett MA, Huang TN, Matheson TW, Smith AK (1982) Inorg. Synth. 21:74–78

    Article  CAS  Google Scholar 

  32. Crabtree RH, Pearman AJ (1977) J Organomet Chem 141:325–330. doi:10.1016/s0022-328x(00)90856-8

    Google Scholar 

  33. Carmona D, Ferrer J, Oro LA, Apreda MC, Foces-Foces C, Cano FH, Elguero J, Jimeno ML (1990) J Chem Soc Dalton Trans 1463–1476

  34. Evans IP, Spencer A, Wilkinson G (1973) J Chem Soc Dalton Trans 204–209

  35. Toyama M, Inoue K-I, Iwamatsu S, Nagao N (2006) Bull Chem Soc Jpn 79:1525–1534

    Article  CAS  Google Scholar 

  36. Sheldrick GM (1981) SHELXTL, an integrated system for solving, refining and displaying crystal structures from diffraction data. University of Göttingen, Göttingen, Federal Republic of Germany

  37. Sheldrick GM (2008) Acta Crystallogr A 64:112–122. doi:10.1107/S0108767307043930

    Article  PubMed  CAS  Google Scholar 

  38. Camargo EP (1964) Rev Inst Med Trop Sao Paulo 12:93–100

    Google Scholar 

  39. Thalhofer CJ, Graff JW, Love-Homan L, Hickerson SM, Craft N, Beverley SM, Wilson ME (2010) J Vis Exp 41:e1980 10.3791/1980

    Google Scholar 

  40. Uphoff CC, Drexler HG (2005) Methods Mol Biol 290:13–23

    PubMed  CAS  Google Scholar 

  41. Capul AA, Hickerson SM, Barron T, Turco SJ, Beverley SM (2007) Infect Immun 75:4629–4637

    Article  PubMed  CAS  Google Scholar 

  42. Lara D, Feng Y, Bader J, Savage PB, Maldonado RA (2010) J Parasitol 96:638–642

    Article  PubMed  CAS  Google Scholar 

  43. Nohara LL, Lema C, Bader JO, Aguilera RJ, Almeida IC (2010) Parasitol Int 59:565–570

    Article  PubMed  CAS  Google Scholar 

  44. Henn M, Alessio E, Mestroni G, Calligaris M, Attia WM (1991) Inorg Chim Acta 187:39–50. doi:10.1016/s0020-1693(00)82975-8

    Article  CAS  Google Scholar 

  45. Alessio E, Calligaris M, Iwamoto M, Marzilli LG (1996) Inorg Chem 35:2538–2545. doi:10.1021/ic9509793

    Article  PubMed  CAS  Google Scholar 

  46. Vock CA, Scolaro C, Phillips AD, Scopelliti R, Sava G, Dyson PJ (2006) J Med Chem 49:5552–5561. doi:10.1021/jm060495o

    Article  PubMed  CAS  Google Scholar 

  47. Peeters OM, Blaton NM, Gerber JG, Gal.J. (2004) Acta Crystalogr E Struct Rep Online 60:O367

    Google Scholar 

  48. Chen H, Parkinson JA, Morris RE, Sadler PJ (2003) J Am Chem Soc 125:173–186. doi:10.1021/ja027719m

    Article  PubMed  CAS  Google Scholar 

  49. Habtemariam A, Melchart M, Fernández R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) J Med Chem 49:6858–6868. doi:10.1021/jm060596m

    Article  PubMed  CAS  Google Scholar 

  50. Song H, Kaiser JT, Barton JK (2012) Nat Chem 4:615–620. doi:10.1038/nchem.1375

    Article  PubMed  CAS  Google Scholar 

  51. Lincoln P, Nordén B (1998) J Phys Chem B 102:9583–9594. doi:10.1021/jp9824914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Cell Culture and High Throughput Screening (HTS, #20) Core Facility of the University of Texas at El Paso for services and facilities provided; this core facility is supported by NIMHD grant G12MD007592. We thank the BBRC for a small grant (NIMHD/G12MD007592) and the University of Texas URI for a grant (to R.A.M.). M.A.V. was supported by NIH-RISE (2R25GM069621-10). We also thank the NIH for support through grant 5SC1GM089558 (to R.A.S.-D.) and the National Science Foundation (CHE-0619638) for the acquisition of an X-ray diffractometer for Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto A. Sánchez-Delgado or Rosa A. Maldonado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iniguez, E., Sánchez, A., Vasquez, M.A. et al. Metal–drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells. J Biol Inorg Chem 18, 779–790 (2013). https://doi.org/10.1007/s00775-013-1024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1024-2

Keywords

Navigation