Skip to main content
Log in

Does the environment around the H-cluster allow coordination of the pendant amine to the catalytic iron center in [FeFe] hydrogenases? Answers from theory

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

[FeFe] hydrogenases are H2-evolving enzymes that feature a diiron cluster in their active site (the [2Fe]H cluster). One of the iron atoms has a vacant coordination site that directly interacts with H2, thus favoring its splitting in cooperation with the secondary amine group of a neighboring, flexible azadithiolate ligand. The vacant site is also the primary target of the inhibitor O2. The [2Fe]H cluster can span various redox states. The active-ready form (Hox) attains the FeIIFeI state. States more oxidized than Hox were shown to be inactive and/or resistant to O2. In this work, we used density functional theory to evaluate whether azadithiolate-to-iron coordination is involved in oxidative inhibition and protection against O2, a hypothesis supported by recent results on biomimetic compounds. Our study shows that Fe–N(azadithiolate) bond formation is favored for an FeIIFeII active-site model which disregards explicit treatment of the surrounding protein matrix, in line with the case of the corresponding FeIIFeII synthetic system. However, the study of density functional theory models with explicit inclusion of the amino acid environment around the [2Fe]H cluster indicates that the protein matrix prevents the formation of such a bond. Our results suggest that mechanisms other than the binding of the azadithiolate nitrogen protect the active site from oxygen in the so-called H inactox state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

Notes

  1. Phosphorous-bound methyl and phenyl groups were disregarded in such an analysis, given the flatness of the energy landscape associated with their rotation.

  2. In the electronic supplementary material, we also present results for alternative medium-sized models that include either the side chain of Cys178 (a residue that is capable of establishing a hydrogen bond with the amine group of the pendant as shown in Scheme 1; model denomination cys M, Fig. S3) or a fragment of the protein backbone surrounding Ala109 (a residue that is hydrogen-bonded to the Fep-bound CN group; model termed ala M, Fig. S4). In both the cys M model and the ala M model, the Hoverox state featuring an Fed–N bond is stabler than the alternative conformation in which such a bond is absent. In the Hox state of both cys M and ala M, the Fed–N bond can form, but the resulting conformations are 2.7 and 4.1 kcal mol–1 less stable than the alternative isomers without such a bond (see the electronic supplementary material for further details).

References

  1. Lubitz W, Reijerse E, van Gastel M (2007) Chem Rev 107:4331–4365. doi:10.1021/Cr050186q

    Article  PubMed  CAS  Google Scholar 

  2. Tard C, Pickett CJ (2009) Chem Rev 109:2245–2274. doi:10.1021/Cr800542q

    Article  PubMed  CAS  Google Scholar 

  3. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13–23. doi:10.1016/S0969-2126(99)80005-7

    Article  PubMed  CAS  Google Scholar 

  4. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  5. Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagyi RK (2008) J Am Chem Soc 130:4533–4540. doi:10.1021/ja711187e

    Article  PubMed  CAS  Google Scholar 

  6. Bruschi M, Greco C, Kaukonen M, Fantucci P, Ryde U, De Gioia L (2009) Angew Chem Int Ed 48:3503–3506. doi:10.1002/anie.200900494

    Article  CAS  Google Scholar 

  7. Adamska ASA, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W (2012) Angew Chem Int Ed 51:11458–11462

    Article  CAS  Google Scholar 

  8. Fan HJ, Hall MB (2001) J Am Chem Soc 123:3828–3829. doi:10.1021/ja004120i

    Article  PubMed  CAS  Google Scholar 

  9. Greco C, Bruschi M, De Gioia L, Ryde U (2007) Inorg Chem 46:5911–5921. doi:10.1021/Ic062320a

    Article  PubMed  CAS  Google Scholar 

  10. Lemon BJ, Peters JW (1999) Biochemistry 38:12969–12973

    Article  PubMed  CAS  Google Scholar 

  11. Baffert C, Bertini L, Lautier T, Greco C, Sybirna K, Ezanno P, Etienne E, Soucaille P, Bertrand P, Bottin H, Meynial-Salles I, De Gioia L, Leger C (2011) J Am Chem Soc 133:2096–2099. doi:10.1021/Ja110627b

    Article  PubMed  CAS  Google Scholar 

  12. Bruska MK, Stiebritz MT, Reiher M (2011) J Am Chem Soc 133:20588–20603. doi:10.1021/Ja209165r

    Article  PubMed  CAS  Google Scholar 

  13. Stiebritz MT, Reiher M (2009) Inorg Chem 48:7127–7140. doi:10.1021/Ic9002127. Erratum in: Stiebritz MT, Reiher M (2010) Inorg Chem 49:8645. doi10.1021/ic1015737

  14. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) Proc Natl Acad Sci USA 106:17331–17336. doi:10.1073/pnas.0905343106

    Article  PubMed  CAS  Google Scholar 

  15. Baffert C, Demuez M, Cournac L, Burlat B, Guigliarelli B, Bertrand P, Girbal L, Leger C (2008) Angew Chem Int Ed 47:2052–2054. doi:10.1002/anie.200704313

    Article  CAS  Google Scholar 

  16. Wait AF, Brandmayr C, Stripp ST, Cavazza C, Fontecilla-Camps JC, Happe T, Armstrong FA (2011) J Am Chem Soc 133:1282–1285. doi:10.1021/Ja110103p

    Article  PubMed  CAS  Google Scholar 

  17. Foster CE, Kramer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA (2012) J Am Chem Soc 134:7553–7557. doi:10.1021/Ja302096r

    Article  PubMed  CAS  Google Scholar 

  18. Ryde U, Greco C, De Gioia L (2010) J Am Chem Soc 132:4512. doi:10.1021/ja909194f

    Google Scholar 

  19. Nicolet Y, de Lacey AL, Vernede X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) J Am Chem Soc 123:1596–1601. doi:10.1021/ja0020963

    Article  PubMed  CAS  Google Scholar 

  20. Silakov A, Wenk B, Reijerse E, Lubitz W (2009) Phys Chem Chem Phys 11:6592–6599. doi:10.1039/B905841a

    Article  PubMed  CAS  Google Scholar 

  21. Erdem OF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50:1439–1443. doi:10.1002/anie.201006244

    Article  CAS  Google Scholar 

  22. Greco C, Bruschi M, Heimdal J, Fantucci P, De Gioia L, Ryde U (2007) Inorg Chem 46:7256–7258. doi:10.1021/Ic701051h

    Article  PubMed  CAS  Google Scholar 

  23. Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L (2011) Chem Eur J 17:1954–1965. doi:10.1002/chem.201001493

    Article  PubMed  CAS  Google Scholar 

  24. Knorzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T (2012) J Biol Chem 287:1489–1499. doi:10.1074/jbc.M111.305797

    Article  PubMed  Google Scholar 

  25. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107:4273–4303. doi:10.1021/cr050195z

    Article  PubMed  CAS  Google Scholar 

  26. Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ (2006) J Biol Inorg Chem 11:102–118. doi:10.1007/s00775-005-0040-2

    Article  PubMed  CAS  Google Scholar 

  27. Albracht SPJ, Roseboom W, Hatchikian EC (2006) J Biol Inorg Chem 11:88–101. doi:10.1007/s00775-005-0039-8

    Article  PubMed  CAS  Google Scholar 

  28. Vanderwesten HM, Mayhew SG, Veeger C (1978) FEBS Lett 86:122–126. doi:10.1016/0014-5793(78)80112-4

    Article  CAS  Google Scholar 

  29. Pereira AS, Tavares P, Moura I, Moura JJG, Huynh BH (2001) J Am Chem Soc 123:2771–2782. doi:10.1021/Ja003176+

    Article  PubMed  CAS  Google Scholar 

  30. Huynh BH, Czechowski MH, Kruger HJ, Dervartanian DV, Peck HD, Legall J (1984) Proc Natl Acad Sci USA 81:3728–3732. doi:10.1073/pnas.81.12.3728

    Article  PubMed  CAS  Google Scholar 

  31. Liu ZP, Hu P (2002) J Am Chem Soc 124:5175–5182. doi:10.1021/Ja0118690

    Article  PubMed  CAS  Google Scholar 

  32. Cao ZX, Hall MB (2001) J Am Chem Soc 123:3734–3742. doi:10.1021/Ja000116v

    Article  PubMed  CAS  Google Scholar 

  33. Vincent KA, Parkin A, Lenz O, Albracht SPJ, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005) J Am Chem Soc 127:18179–18189. doi:10.1021/Ja055160v

    Article  PubMed  CAS  Google Scholar 

  34. Vandijk C, Vanberkelarts A, Veeger C (1983) FEBS Lett 156:340–344

    Article  CAS  Google Scholar 

  35. Silakov A, Kamp C, Reijerse E, Happe T, Lubitz W (2009) Biochemistry 48:7780–7786. doi:10.1021/Bi9009105

    Article  PubMed  CAS  Google Scholar 

  36. Stiebritz MT, Reiher M (2012) Chem Sci 3:1739–1751. doi:10.1039/c2sc01112c

    Article  CAS  Google Scholar 

  37. Olsen MT, Rauchfuss TB, Wilson SR (2010) J Am Chem Soc 132:17733–17740. doi:10.1021/Ja103998v

    Article  PubMed  CAS  Google Scholar 

  38. Vincent KA, Parkin A, Armstrong FA (2007) Chem Rev 107:4366–4413. doi:10.1021/Cr050191u

    Article  PubMed  CAS  Google Scholar 

  39. Moro G, Bonati L, Bruschi M, Cosentino U, De Gioia L, Fantucci P, Pandini A, Papaleo E, Pitea D, Saracino GAA, Zampella G (2007) Theor Chem Acc 117:723–741. doi:10.1007/s00214-006-0203-4

    Article  PubMed  CAS  Google Scholar 

  40. Cosentino U, Pitea D, Moro G, Saracino GAA, Villa A (2009) Phys Chem Chem Phys 11:3943–3950. doi:10.1039/B902049g

    Article  PubMed  CAS  Google Scholar 

  41. Cosentino U, Moro G, Pitea D, Villa A, Fantucci PC, Maiocchi A, Uggeri F (1998) J Phys Chem A 102:4606–4614. doi:10.1021/Jp973271d

    Article  CAS  Google Scholar 

  42. Siegbahn PEM, Tye JW, Hall MB (2007) Chem Rev 107:4414–4435. doi:10.1021/Cr050185y

    Article  PubMed  CAS  Google Scholar 

  43. Vastine BA, Hall MB (2009) Coord Chem Rev 253:1202–1218. doi:10.1016/j.ccr.2008.07.015

    Article  CAS  Google Scholar 

  44. Reiher M (2009) Chimia 63:140–145. doi:10.2533/chimia.2009.140

    Article  CAS  Google Scholar 

  45. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165–169. doi:10.1016/0009-2614(89)85118-8

    Article  CAS  Google Scholar 

  46. Becke AD (1988) Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  PubMed  CAS  Google Scholar 

  47. Perdew JP (1986) Phys Rev B 33:8822–8824. doi:10.1103/PhysRevB.33.8822

    Article  Google Scholar 

  48. Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  Google Scholar 

  49. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305. doi:10.1039/B508541a

    Article  PubMed  CAS  Google Scholar 

  50. Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem Phys Lett 240:283–289. doi:10.1016/0009-2614(95)00621-A

    Article  CAS  Google Scholar 

  51. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124. doi:10.1007/s002140050244

    Article  CAS  Google Scholar 

  52. Klamt A (1995) J Phys Chem 99:2224–2235. doi:10.1021/J100007a062

    Article  CAS  Google Scholar 

  53. Noodleman L, Norman JG (1979) J Chem Phys 70:4903–4906. doi:10.1063/1.437369

    Article  CAS  Google Scholar 

  54. Noodleman L (1981) J Chem Phys 74:5737–5743. doi:10.1063/1.440939

    Article  CAS  Google Scholar 

  55. Greco C, Fantucci P, Ryde U, de Gioia L (2011) Int J Quantum Chem 111:3949–3960. doi:10.1002/Qua.22849

    CAS  Google Scholar 

  56. Yu L, Greco C, Bruschi M, Ryde U, De Gioia L, Reiher M (2011) Inorg Chem 50:3888–3900. doi:10.1021/Ic102039z

    Article  PubMed  CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  58. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  59. Greco C, De Gioia L (2011) Inorg Chem 50:6987–6995. doi:10.1021/Ic200297d

    Article  PubMed  CAS  Google Scholar 

  60. Matito E, Sola M (2009) Coord Chem Rev 253:647–665. doi:10.1016/j.ccr.2008.10.003

    Article  CAS  Google Scholar 

  61. Francuski BM, Novakovic SB, Bogdanovic GA (2011) CrystEngComm 13:3580–3591. doi:10.1039/C0ce00760a

    Article  CAS  Google Scholar 

  62. Greco C, Silakov A, Bruschi M, Ryde U, De Gioia L, Lubitz W (2011) Eur J Inorg Chem 2011:1043–1049. doi:10.1002/ejic.201001058

Download references

Acknowledgments

Financial support of this work from the Cluster of Excellence “Unifying Concepts in Catalysis” (Berlin) is gratefully acknowledged; We acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support. C.L., F.V., and C.B. acknowledge the CNRS, Aix-Marseille Université, and the ANR (ANR-12-BS08-0014) for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca De Gioia or Claudio Greco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, T., Bruschi, M., Cosentino, U. et al. Does the environment around the H-cluster allow coordination of the pendant amine to the catalytic iron center in [FeFe] hydrogenases? Answers from theory. J Biol Inorg Chem 18, 693–700 (2013). https://doi.org/10.1007/s00775-013-1014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1014-4

Keywords

Navigation