Skip to main content
Log in

Theoretical studies on the reaction mechanism of PP1 and the effects of different oxidation states of the Mn–Mn center on the mechanism

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Protein phosphatase 1 (PP1) is a dinuclear metalloenzyme that catalyzes the dephosphorylation of serine and threonine residues. In this work, the catalytic reaction mechanism of PP1 was theoretically investigated by hybrid density functional theory. Firstly, an initial model of the Mn(II)–Mn(II) active site of PP1 was constructed on the basis of the high-resolution crystal structure, and stationary points along the reaction pathway were optimized and analyzed. The calculations provide strong support for the mechanism of the dephosphorylation by PP1 and suggest that His125 plays the role of donating a proton to the leaving group. Furthermore, reaction models with the Mn–Mn centers at different oxidation states [Mn(III)–Mn(II) and Mn(III)–Mn(III) centers] were designed. Our calculations show that increasing the oxidation state of one or both Mn(II) can shorten the bond lengths between the metal ions and the ligands, and increase the energy barrier of the related reactions. We found it interesting that artificially adding a negatively charged hydroxy ligand into the Mn(III)–Mn(II) center can recover the shortened coordination bonds and lower the increased energy barrier. Our investigation suggests that the definite oxidation states of the metal centers should be significantly correlated to the negative charges of the ligands not only in phosphoprotein phosphatases, but also in purple acid phosphatases and Escherichia coli 5′-nucleotidase. This means that all the members of phosphoprotein phosphatases adopt homodivalent centers, and suggests the heterovalent active sites of purple acid phosphatases have evolved from homodivalent ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ceulemans H, Bollen M (2004) Physiol Rev 84:1–39

    Article  PubMed  CAS  Google Scholar 

  2. Barford D (1995) Curr Opin Struct Biol 5:728–734

    Article  PubMed  CAS  Google Scholar 

  3. Gallego M, Virshup D (2005) Curr Opin Cell Biol 17:197–202

    Article  PubMed  CAS  Google Scholar 

  4. Kelker M, Page R, Peti W (2009) J Mol Biol 385:11–21

    Article  PubMed  CAS  Google Scholar 

  5. Maynes J, Luu H, Cherney M, Andersen R, Williams D, Holmes C, James M (2006) J Mol Biol 356:111–120

    Article  PubMed  CAS  Google Scholar 

  6. Maynes J, Bateman K, Cherney M, Das A, Luu H, Holmes C, James M (2001) J Biol Chem 276:44078–44082

    Article  PubMed  CAS  Google Scholar 

  7. Griffith J, Kim J, Kim E, Sintchak M, Thomson J, Fitzgibbon M, Fleming M, Caron P, Hsiao K, Navia M (1995) Cell 82:507–522

    Article  PubMed  CAS  Google Scholar 

  8. Xing Y, Xu Y, Chen Y, Jeffrey P, Chao Y, Lin Z, Li Z, Strack S, Stock J, Shi Y (2006) Cell 127:341–353

    Article  PubMed  CAS  Google Scholar 

  9. Shi Y (2009) Cell 139:468–484

    Article  PubMed  CAS  Google Scholar 

  10. Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Article  PubMed  CAS  Google Scholar 

  11. Knöfel T, Sträter N (2001) J Mol Biol 309:239–254

    Article  PubMed  Google Scholar 

  12. Sträter N (2006) Purinerg Signal 2:343–350

    Article  Google Scholar 

  13. Mitic N, Noble C, Gahan L, Hanson G, Schenk G (2009) J Am Chem Soc 131:8173–8179

    Article  PubMed  CAS  Google Scholar 

  14. Egloff M, Cohen P, Reinemer P, Barford D (1995) J Mol Biol 254:942–959

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg J, Huang H, Kwon Y, Greengard P, Nairn A, Kuriyan J (1995) Nature 376:745–753

    Article  PubMed  CAS  Google Scholar 

  16. Mitic N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363

    Article  PubMed  CAS  Google Scholar 

  17. Liao RZ, Ding WJ, Yu JG, Fang WH, Liu RZ (2008) J Comput Chem 29:1919–1929

    Article  PubMed  CAS  Google Scholar 

  18. Liao RZ, Yu JG, Raushel FM, Himo F (2008) Chem Eur J 14:4287–4292

    Article  PubMed  CAS  Google Scholar 

  19. Liao RZ, Yu JG, Himo F (2009) Inorg Chem 48:1442–1448

    Article  PubMed  CAS  Google Scholar 

  20. Yang L, Liao RZ, Yu JG, Liu RZ (2009) J Phys Chem B 113:6505–6510

    Article  PubMed  CAS  Google Scholar 

  21. Liao RZ, Yu JG, Himo F (2010) J Phys Chem B 114:2533–2540

    Article  PubMed  CAS  Google Scholar 

  22. Ma Y, Sun Q, Zhang H, Peng L, Yu JG, Smith SC (2010) J Phys Chem B 114:9698–9705

    Article  PubMed  CAS  Google Scholar 

  23. Ma Y, Sun Q, Li Z, Yu JG, Smith SC (2012) J Phys Chem B 116:1426–1436

    Article  PubMed  CAS  Google Scholar 

  24. Liu YF, Liao RZ, Ding WJ, Yu JG, Liu RZ (2011) J Biol Inorg Chem 16:745–752

    Article  PubMed  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem. Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  28. Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian, Wallingford

  29. Zhurko G, Zhurko D (2005) ChemCraft, Lite version build

  30. Siegbahn PEM (2000) Inorg Chem 39:2923–2935

    Article  PubMed  CAS  Google Scholar 

  31. Siegbahn PEM (2001) Theor Chem Acc 105:197–206

    Article  CAS  Google Scholar 

  32. Schenk G, Boutchard CL, Carrington LE, Noble CJ, Moubaraki B, Murray KS, De Jersey J, Hanson GR, Hamilton S (2001) J Biol Chem 276:19084–19088

    Article  PubMed  CAS  Google Scholar 

  33. Merkx M, Pinkse MWH, Averill BA (1999) Biochemistry 38:9914–9925

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Ho RYN, Whiting AK, Que L Jr (1999) J Am Chem Soc 121:9235–9236

    Article  CAS  Google Scholar 

  35. Cox RS, Schenk G, Mitic N, Gahan LR, Hengge AC (2007) J Am Chem Soc 129:9550–9551

    Article  PubMed  CAS  Google Scholar 

  36. Namgaladze D, Hofer HW, Ullrich V (2002) J Biol Chem 277:5962–5969

    Article  PubMed  CAS  Google Scholar 

  37. Ullrich V, Namgaladze D, Frein D (2003) Toxicol Lett 139:107–110

    Article  PubMed  CAS  Google Scholar 

  38. Wang DL, Holz RC, David SS, Que L Jr, Stankovich MT (1991) Biochemistry 30:8187–8194

    Article  PubMed  CAS  Google Scholar 

  39. Bernhardt PV, Schenk G, Wilson GJ (2004) Biochemistry 43:10387–10392

    Article  PubMed  CAS  Google Scholar 

  40. Yu L, Golbeck J, Yao J, Rusnak F (1997) Biochemistry 36:10727–10734

    Article  PubMed  CAS  Google Scholar 

  41. Zvelebil MJJM, Sternberg MJE (1988) Protein Eng 2:127–138

    Article  PubMed  CAS  Google Scholar 

  42. Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342–358

    Article  PubMed  CAS  Google Scholar 

  43. Süel GM, Lockless SW, Wall MA, Ranganathan R (2002) Nat Struct Mol Biol 10:59–69

    Article  Google Scholar 

  44. Pazos F, Valencia A (2008) EMBO J 27:2648–2655

    Article  PubMed  CAS  Google Scholar 

  45. Hirschi A, Cecchini M, Steinhardt RC, Schamber MR, Dick FA, Rubin SM (2010) Nat Struct Mol Biol 17:1051–1057

    Article  PubMed  CAS  Google Scholar 

  46. Huhn J, Jeffrey PD, Larsen K, Rundberget T, Rise F, Cox NR, Arcus V, Shi Y, Miles CO (2009) Chem Res Toxicol 22:1782–1786

    Article  PubMed  CAS  Google Scholar 

  47. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL (1999) Structure 7:757–767

    Article  PubMed  CAS  Google Scholar 

  48. Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G (1999) J Mol Biol 290:201–211

    Article  PubMed  CAS  Google Scholar 

  49. Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss JM (2005) J Mol Biol 351:233–246

    Article  PubMed  Google Scholar 

  50. Schenk G, Gahan LR, Carrington LE, Miti N, Valizadeh M, Hamilton SE, De Jersey J, Guddat LW (2005) Proc Natl Acad Sci USA 102:273–278

    Article  PubMed  CAS  Google Scholar 

  51. Li H, Zhang L, Rao A, Harrison S, Hogan P (2007) J Mol Biol 369:1296–1306

    Article  PubMed  CAS  Google Scholar 

  52. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from National Natural Science Foundation of China (grant no. 21073014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ma, Y., Liu, K. et al. Theoretical studies on the reaction mechanism of PP1 and the effects of different oxidation states of the Mn–Mn center on the mechanism. J Biol Inorg Chem 18, 451–459 (2013). https://doi.org/10.1007/s00775-013-0989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0989-1

Keywords

Navigation