Skip to main content
Log in

In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Members of the ZIP (SLC39A) and ZnT (SLC30A) families of transmembrane domain proteins are predicted to transport the essential transition metal zinc across membranes, regulating cellular zinc content and distribution via uptake and efflux at the outer plasma and organellar membranes. Twenty-four ZIP and ZnT proteins are encoded in mammalian genomes, raising questions of whether all actually transport zinc, whether several function together in the same tissues/cell types, and how the activity of these transporters is coordinated. To address these questions, we have taken advantage of the ability to manipulate several genes simultaneously in targeted cell types in Drosophila. Previously we reported zinc toxicity phenotypes caused by combining overexpression of a zinc uptake gene, dZip42C.1, with suppression of a zinc efflux gene, dZnT63C. Here we show that these phenotypes can be used as a sensitized in vivo system to detect subtle alterations in zinc transport activity that would be buffered in healthy cells. Using two adult tissues, the fly eye and midline (thorax/abdomen), we find that when overexpressed, most of the 17 Drosophila Zip and ZnT genes modify the zinc toxicity phenotypes in a manner consistent with their predicted zinc transport activity. In most cases, we can reconcile that activity with the cellular localization of an enhanced green fluorescent protein tagged version of the protein. Additionally, targeted suppression of each gene by RNA interference reveals several of the fly Zip and ZnT genes are required in the eye, indicating that numerous independent zinc transport genes are acting together in a single tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berg JM, Shi Y (1996) Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  2. Tubek S, Grzanka P, Tubek I (2008) Biol Trace Elem Res 122:193–196

    Article  PubMed  CAS  Google Scholar 

  3. Kambe T, Weaver BP, Andrews GK (2008) Genesis 46:214–228

    Article  PubMed  CAS  Google Scholar 

  4. Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) J Biol Chem 278:33474–33481

    Article  PubMed  CAS  Google Scholar 

  5. Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, Hojyo S, Nakayama M, Ohara O, Koseki H, Dos Santos HG, Bonafe L, Ha-Vinh R, Zankl A, Unger S, Kraenzlin ME, Beckmann JS, Saito I, Rivolta C, Ikegawa S, Superti-Furga A, Hirano T (2008) PLoS ONE 3:e3642

    Article  PubMed  Google Scholar 

  6. Gupta A, Lutsenko S (2009) Future Med Chem 1:1125–1142. doi:10.4155/fmc.09.84

    Article  PubMed  CAS  Google Scholar 

  7. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) J Biol Inorg Chem 16:1123–1134. doi:10.1007/s00775-011-0797-4

    Article  PubMed  CAS  Google Scholar 

  8. Andreini C, Banci L, Bertini I, Rosato A (2006) J Proteome Res 5:3173–3178

    Article  PubMed  CAS  Google Scholar 

  9. McMahon RJ, Cousins RJ (1998) Proc Natl Acad Sci USA 95:4841–4846

    Article  PubMed  CAS  Google Scholar 

  10. Nitzan YB, Sekler I, Hershfinkel M, Moran A, Silverman WF (2002) Brain Res Dev Brain Res 137:149–157

    Article  PubMed  CAS  Google Scholar 

  11. Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF (2002) J Comp Neurol 447:201–209. doi:10.1002/cne.10224

    Article  PubMed  CAS  Google Scholar 

  12. Elgazar V, Razanov V, Stoltenberg M, Hershfinkel M, Huleihel M, Nitzan YB, Lunenfeld E, Sekler I, Silverman WF (2005) J Histochem Cytochem 53:905–912. doi:10.1369/jhc.4A6482.2005

    Article  PubMed  CAS  Google Scholar 

  13. Palmiter RD, Cole TB, Findley SD (1996) EMBO J 15:1784–1791

    PubMed  CAS  Google Scholar 

  14. Seo YA, Lopez V, Kelleher SL (2011) Am J Physiol Cell Physiol 300:C1479–C1489. doi:10.1152/ajpcell.00420.2010

    Article  PubMed  CAS  Google Scholar 

  15. Lopez V, Kelleher SL (2009) Biochem J 422:43–52. doi:10.1042/BJ20081189

    Article  PubMed  CAS  Google Scholar 

  16. Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang F, Cousins RJ (2010) Proc Natl Acad Sci USA 107:2818–2823. doi:10.1073/pnas.0914941107

    Article  PubMed  CAS  Google Scholar 

  17. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) Proc Natl Acad Sci USA 93:14934–14939

    Article  PubMed  CAS  Google Scholar 

  18. Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G (1999) Am J Physiol 277:G1231–G1239

    PubMed  CAS  Google Scholar 

  19. Ho LH, Ruffin RE, Murgia C, Li L, Krilis SA, Zalewski PD (2004) J Immunol 172:7750–7760

    PubMed  CAS  Google Scholar 

  20. Murgia C, Grosser D, Truong-Tran AQ, Roscioli E, Michalczyk A, Ackland ML, Stoltenberg M, Danscher G, Lang C, Knight D, Perozzi G, Ruffin RE, Zalewski P (2011) Nutrients 3:910–928. doi:10.3390/nu3110910

    Article  PubMed  CAS  Google Scholar 

  21. Chimienti F, Devergnas S, Favier A, Seve M (2004) Diabetes 53:2330–2337

    Article  PubMed  CAS  Google Scholar 

  22. Andrews GK (2008) Biochem Soc Trans 36:1242–1246. doi:10.1042/BST0361242

    Article  PubMed  CAS  Google Scholar 

  23. Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Biol Chem 388:1301–1312. doi:10.1515/BC.2007.149

    Article  PubMed  CAS  Google Scholar 

  24. Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Mol Pharmacol 73:1413–1423. doi:10.1124/mol.107.043588

    Article  PubMed  CAS  Google Scholar 

  25. He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) Mol Pharmacol 70:171–180. doi:10.1124/mol.106.024521

    PubMed  CAS  Google Scholar 

  26. Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Proc Natl Acad Sci USA 109:7202–7207. doi:10.1073/pnas.1200362109

    Article  PubMed  CAS  Google Scholar 

  27. Lye JC, Richards CD, Dechen K, Paterson D, de Jonge MD, Howard DL, Warr CG, Burke R (2012) J Exp Biol. doi:10.1242/jeb.069260

    PubMed  Google Scholar 

  28. Van Doren M, Mathews WR, Samuels M, Moore LA, Broihier HT, Lehmann R (2003) Development 130:2355–2364

    Article  PubMed  Google Scholar 

  29. Mathews WR, Ong D, Milutinovich AB, Van Doren M (2006) Development 133:1143–1153

    Article  PubMed  CAS  Google Scholar 

  30. Stathakis DG, Burton DY, McIvor WE, Krishnakumar S, Wright TR, O’Donnell JM (1999) Genetics 153:361–382

    PubMed  CAS  Google Scholar 

  31. Hsouna A, Lawal HO, Izevbaye I, Hsu T, O’Donnell JM (2007) Dev Biol 308:30–43. doi:10.1016/j.ydbio.2007.04.047

    Article  PubMed  CAS  Google Scholar 

  32. Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W (2006) Nucleic Acids Res 34:4866–4877

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Wu Y, Zhou B (2009) FASEB J 23:2650–2661

    Article  PubMed  CAS  Google Scholar 

  34. Georgiev P, Okkenhaug H, Drews A, Wright D, Lambert S, Flick M, Carta V, Martel C, Oberwinkler J, Raghu P (2010) Cell Metab 12:386–397

    Article  PubMed  CAS  Google Scholar 

  35. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) Nature 448:151–156

    Article  PubMed  CAS  Google Scholar 

  36. Ralph DM, Robinson SR, Campbell MS, Bishop GM (2010) Free Radic Biol Med 49:649–657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Drosophila stocks were imported into Australia by the Australian Drosophila Biomedical Research Support Facility (http://www.ozdros.com). All Drosophila RNAi lines were provided by the Vienna Drosophila RNAi Center. Confocal microscopy was done at Monash Micro Imaging, which also provided training and technical support. This research was supported by a project grant (grant number 606609) from the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Burke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lye, J.C., Richards, C.D., Dechen, K. et al. In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes. J Biol Inorg Chem 18, 323–332 (2013). https://doi.org/10.1007/s00775-013-0976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0976-6

Keywords

Navigation