Skip to main content
Log in

1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO3 ) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO3 , and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO3 is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO3 and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO3 likely plays a major role in the stabilization of the substrate in the active pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For square-pyramidal geometry τ = 0 and for trigonal bipyramidal geometry τ = 1.

  2. Docking experiments were also performed on the crystal structure (using a monomer from the tetramer and removing the phosphate molecule bound on the metal ion). The position of ACC is similar to that obtained on the modeled structure, although this is twisted. The amine group of ACC is found trans to H177 and the oxygen is coordinated approximately trans to D179. When HCO3 is docked on the ACCO/Fe/ACC complex from the above-mentioned calculations, the most favorable position is located far from ACC (more than 10 Å).

References

  1. Bleecker AB, Kende H (2000) Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  2. John P (1997) Physiol Plant 100:583–592

    Article  CAS  Google Scholar 

  3. Adams DO, Yang SF (1979) Proc Natl Acad Sci USA 76:170–174

    Article  PubMed  CAS  Google Scholar 

  4. Hamilton AJ, Lycett GW, Grierson D (1990) Nature 346:284–287

    Article  CAS  Google Scholar 

  5. Hamilton AJ, Bouzayen M, Grierson D (1991) Proc Natl Acad Sci USA 88:7434–7437

    Article  PubMed  CAS  Google Scholar 

  6. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  PubMed  CAS  Google Scholar 

  7. Stella L, Wouters S, Baldellon F (1996) Bull Soc Chim Fr 133:441–455

    CAS  Google Scholar 

  8. Zhang Z, Ren J-S, Clifton IJ, Schofield CJ (2004) Chem Biol 11:1383–1394

    Article  PubMed  CAS  Google Scholar 

  9. Yoo A, Seo YS, Jung J-W, Sung S-K, Kim WT, Lee W, Yang DR (2006) J Struct Biol 156:407–420

    Article  PubMed  CAS  Google Scholar 

  10. Dilley DR, Kadyrzhanova DK, Wang Z (2001) Acta Hortic 553:143–144

    CAS  Google Scholar 

  11. Seo YS, Yoo A, Jung J, Sung S-K, Yang DR, Kim WT, Lee W (2004) Biochem J 380:339–346

    Article  PubMed  CAS  Google Scholar 

  12. Hausinger RP (2004) Crit Rev Biochem Mol Biol 39:21–68

    Article  PubMed  CAS  Google Scholar 

  13. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) J Inorg Biochem 100:644–669

    Article  PubMed  CAS  Google Scholar 

  14. Schofield CJ, Zhang Z (1999) Curr Opin Struct Biol 9:722–731

    Article  PubMed  CAS  Google Scholar 

  15. Adlington RM, Baldwin JE, Rawlings BJ (1983) J Chem Soc Chem Commun 290–292

  16. Baldwin JE, Jackson DA, Adlington RM, Rawlings BJ (1985) J Chem Soc Chem Commun 206–207

  17. Pirrung MC (1999) Acc Chem Res 32:711–718

    CAS  Google Scholar 

  18. Rocklin AM, Tierney DL, Kofman V, Brunhuber NMW, Hoffman BM, Cristoffersen RE, Reich NO, Lipscomb JD, Que L Jr (1999) Proc Natl Acad Sci USA 96:7905–7909

    Article  PubMed  CAS  Google Scholar 

  19. Tierney DL, Rocklin AM, Lipscomb JD, Que L Jr, Hoffman BM (2005) J Am Chem Soc 127:7005–7013

    Article  PubMed  CAS  Google Scholar 

  20. Rocklin AM, Kato K, Liu HW, Que L Jr, Lipscomb JD (2004) J Biol Inorg Chem 9:171–182

    Article  PubMed  CAS  Google Scholar 

  21. Mirica LM, Klinman JP (2008) Proc Natl Acad Sci USA 105:1814–1819

    Article  PubMed  CAS  Google Scholar 

  22. Yang SF, Hoffman NE (1984) Annu Rev Plant Physiol Mol Biol 35:155–189

    Article  CAS  Google Scholar 

  23. Dong JG, Fernandez-Maculet JC, Yang SF (1992) Proc Natl Acad Sci USA 89:9789–9793

    Article  PubMed  CAS  Google Scholar 

  24. Barlow JN, Zhang Z, John P, Baldwin JE, Schofield CJ (1997) Biochemistry 36:3563–3569

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Z, Barlow JN, Baldwin JE, Schofield CJ (1997) Biochemistry 36:15999–16007

    Article  PubMed  CAS  Google Scholar 

  26. Zhou J, Rocklin AM, Lipscomb JD, Que L Jr, Solomon EI (2002) J Am Chem Soc 124:4602–4609

    Article  PubMed  CAS  Google Scholar 

  27. Bassan A, Borowski T, Schofield CJ, Siegbahn PEM (2006) Chem Eur J 12:8835–8846

    Article  PubMed  CAS  Google Scholar 

  28. Pirrung MC, Cao J, Chen J (1995) J Org Chem 60:5790–5794

    Article  CAS  Google Scholar 

  29. Pirrung MC, Cao J, Chen J (1998) Chem Biol 5:49–57

    Article  PubMed  CAS  Google Scholar 

  30. Brunhuber NMW, Mort JL, Christoffersen RE, Reich NO (2000) Biochemistry 39:10730–10738

    Article  PubMed  CAS  Google Scholar 

  31. Thrower J, Mirica LM, McCusker KP, Klinman JP (2006) Biochemistry 45:13108–13117

    Article  PubMed  CAS  Google Scholar 

  32. Fadel A (1999) J Org Chem 64:4953–4955

    Article  PubMed  CAS  Google Scholar 

  33. Thrower JS, Blalock R, Klinman JP (2001) Biochemistry 40:9717–9724

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Z, Schofield CJ, Baldwin JE, Thomas P, John P (1995) Biochem J 307:77–85

    PubMed  CAS  Google Scholar 

  35. Cornish-Bowden A (1974) Biochem J 137:143–144

    PubMed  CAS  Google Scholar 

  36. Albani JR (2007) Principles and applications of fluorescence spectroscopy. Blackwell, Oxford

    Book  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  38. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  39. Goodsell DS, Olson AJ (1990) Proteins 8:195–202

    Article  PubMed  CAS  Google Scholar 

  40. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  41. Hu X, Shelver WH (2003) J Mol Graph Model 22:115–126

    Article  PubMed  CAS  Google Scholar 

  42. Langella E, Pierre S, Ghattas W, Giorgi M, Réglier M, Saviano M, Esposito L, Hardré R (2010) ChemMedChem 5:1568–1576

    Article  PubMed  CAS  Google Scholar 

  43. Gibson EJ, Zhang Z, Baldwin JE, Shofield CJ (1998) Phytochemistry 48(4):619–624

    Article  CAS  Google Scholar 

  44. Charng Y–Y, Chou S-J, Jiaang W-T, Chen S-T, Yang SF (2001) Arch Biochem Biophys 385:179–185

    Article  PubMed  CAS  Google Scholar 

  45. Baráth G, Kaizer J, Sándor Pap J, Speier G, El Bakkali-Taheri N, Simaan AJ (2010) Chem Commun 46:7391–7393

  46. Lucas HR, Lee JC (2010) J Inorg Biochem 104:245–249

    Article  PubMed  CAS  Google Scholar 

  47. Straganz GD, Egger S, Aquino G, D’Auria S, Nidetzky B (2006) J Mol Catal B Enzyma 39:171–178

    Article  CAS  Google Scholar 

  48. Dunning Hotopp JC, Auchtung TA, Hogan DA, Hausinger RP (2003) J Inorg Biochem 93:66–70

    Google Scholar 

  49. Addison AW, Rao TN, Reedijk J, van Rijn J, Veschoor GC (1984) J Chem Soc Dalton Trans 1349–1356

  50. Freedman LD, Doak GO (1957) Chem Rev 57:479–523

    Article  CAS  Google Scholar 

  51. Lehrer SS (1969) J Biol Chem 244:3613–3617

    PubMed  CAS  Google Scholar 

  52. Horrocks WD Jr (1993) Methods Enzymol 226:495–538

    Article  PubMed  CAS  Google Scholar 

  53. James NG, Ross JA, Mason AB, Jameson DM (2010) Protein Sci 19:99–110

    PubMed  CAS  Google Scholar 

  54. Ghattas W, Gaudin C, Giorgi M, Rockenbauer A, Simaan AJ, Réglier M (2006) Chem Commun 1027–1029

  55. Ghattas W, Giorgi M, Gaudin C, Rockenbauer A, Réglier M, Simaan AJ (2007) Bioinorg Chem Appl. doi:10.1155/2007/43424

    PubMed  Google Scholar 

  56. Ghattas W, Giorgi M, Mekmouche Y, Rockenbauer A, Tanaka T, Réglier M, Hitomi Y, Simaan AJ (2008) Inorg Chem 47:4627–4638

    Article  PubMed  CAS  Google Scholar 

  57. Judas N, Raos N (2006) Inorg Chem 45:4892–4894

    Article  PubMed  CAS  Google Scholar 

  58. Lay VJ, Prescott AG, Thomas PG, John P (1996) Eur J Biochem 242:228–234

    Article  PubMed  CAS  Google Scholar 

  59. Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Nature 387:827–830

    Article  PubMed  CAS  Google Scholar 

  60. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  PubMed  Google Scholar 

  61. Higgins LJ, Yan F, Liu P, Liu HW, Drennan CL (2005) Nature 437:838–844

    Article  PubMed  CAS  Google Scholar 

  62. Yan F, Moon S-J, Liu P, Zhao Z, Lipscomb JD, Liu A, Liu H-W (2007) Biochemistry 46:12628–12638

    Article  PubMed  CAS  Google Scholar 

  63. Cicchillo RM, Zhang H, Blodgett JA, Whitteck JT, Li G, Nair SK, van der Donk WA, Metcalf WW (2009) Nature 459:871–874

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Agence Nationale de la Recherche (ANR-09-JCJC-0080). The authors acknowledge C. Schofield and Z. Zhang from Oxford University for providing the plasmid containing the gene encoding tomato ACCO as well as for useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jalila Simaan.

Additional information

L. Brisson and N. E. Bakkali-Taheri contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisson, L., El Bakkali-Taheri, N., Giorgi, M. et al. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies. J Biol Inorg Chem 17, 939–949 (2012). https://doi.org/10.1007/s00775-012-0910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0910-3

Keywords

Navigation