Skip to main content
Log in

Phylogenetic analysis reveals the surprising diversity of an oxygenase class

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

As metalloenzymes capable of transforming a broad range of substrates with high stereo- and regiospecificity, the multicomponent Rieske oxygenases (ROs) have been studied in bacterial systems for applications in bioremediation and industrial biocatalysis. These studies include genetic and biochemical investigations, determination of enzyme structure, phylogenetic analysis, and enzyme classification. Although RO terminal oxygenase components (RO–Os) share a conserved domain structure, their sequences are highly divergent and present significant challenges for identification and classification. Herein, we present the first global phylogenetic analysis of a broad range of RO–Os from diverse taxonomic groups. We employed objective, structure-based criteria to significantly reduce the inclusion of erroneously aligned sequences in the analysis. Our findings reveal that RO biochemical studies to date have been largely concentrated in an unexpectedly narrow portion of the RO–O sequence landscape. Additionally, our analysis demonstrates the existence two distinct groups of RO–O sequences. Finally, the sequence diversity recognized in this study necessitates a new RO–O classification scheme. We therefore propose a P450-like naming system. Our results reveal a diversity of sequence and potential catalytic functionality that has been wholly unappreciated in the RO literature. This study also demonstrates that many commonly used bioinformatic tools may not be sufficient to analyze the vast amount of data available in current databases. These findings facilitate the expanded exploration of RO catalytic capabilities in both biological and technological contexts and increase the potential for practical exploitation of their activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BPDORHA1 :

Biphenyl dioxygenase from Rhodococcus jostii RHA1

CDART:

Conserved Domain Architecture Retrieval Tool

CDD:

Conserved Domain Database

CMO:

Choline monooxygenase

ETC:

Electron transport chain

KshAH37Rv :

3-Ketosteroid 9α-hydroxyxlase from Mycobacterium tuberculosis H37Rv

NCBI:

National Center for Biotechnology Information

NDO9816-4 :

Naphthalene dioxygenase from Pseudomonas sp. NCIB 9816-4

P450:

Cytochrome P450

PDB:

Protein Data Bank

RO:

Rieske oxygenase

RO–O:

Rieske oxygenase terminal oxygenase component

References

  1. Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) J Biol Chem 276:1945–1953. doi:10.1074/jbc.M007795200

    Google Scholar 

  2. Parales RE, Parales JV, Gibson DT (1999) J Bacteriol 181:1831–1837

    PubMed  CAS  Google Scholar 

  3. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586

    Article  PubMed  CAS  Google Scholar 

  4. Tarasev M, Kaddis CS, Yin S, Loo JA, Burgner J, Ballou DP (2007) Arch Biochem Biophys 466:31–39. doi:10.1016/j.abb.2007.07.001

    Google Scholar 

  5. Ballou D, Batie C (1988) Prog Clin Biol Res 274:211–226

    PubMed  CAS  Google Scholar 

  6. Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T (2005) J Bacteriol 187:2483–2490. doi:10.1128/JB.187.7.2483-2490.2005

    Google Scholar 

  7. Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) J Mol Biol 342:1041–1052. doi:10.1016/j.jmb.2004.07.062

    Google Scholar 

  8. Imbeault NY, Powlowski JB, Colbert CL, Bolin JT, Eltis LD (2000) J Biol Chem 275:12430–12437

    Article  PubMed  CAS  Google Scholar 

  9. Boyd DR, Bugg TD (2006) Org Biomol Chem 4:181–192. doi:10.1039/b513226f

    Google Scholar 

  10. Sylvestre M, Macek T, Mackova M (2009) Curr Opin Biotechnol 20:242–247

    Google Scholar 

  11. Pieper DH (2005) Appl Microbiol Biotechnol 67:170–191. doi:10.1007/s00253-004-1810-4

    Google Scholar 

  12. Furukawa K (2003) Trends Biotechnol 21:187–190

    Google Scholar 

  13. Wackett L (2002) Enzyme Microb Technol 31:577–587

    Article  CAS  Google Scholar 

  14. Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T, Shiomi K, Sasakura Y, Takahashi S, Asashima M, Kataoka H, Niwa R (2011) J Biol Chem 286:25756–25762. doi:10.1074/jbc.M111.244384

    Google Scholar 

  15. Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) Plant Mol Biol 54:39–54. doi:10.1023/B:PLAN.0000028766.61559.4c

    Google Scholar 

  16. Priefert H, Rabenhorst J, Steinbuchel A (1997) J Bacteriol 179:2595–2607

    PubMed  CAS  Google Scholar 

  17. Summers RM, Louie TM, Yu CL, Subramanian M (2011) Microbiology 157:583–592. doi:10.1099/mic.0.043612-0

    Google Scholar 

  18. Sydor PK, Barry SM, Odulate OM, Barona-Gomez F, Haynes SW, Corre C, Song L, Challis GL (2011) Nat Chem 3:388–392. doi:10.1038/nchem.1024

    Google Scholar 

  19. Resnick SM, Lee K, Gibson DT (1996) J Ind Microbiol 17:438–457

    Article  CAS  Google Scholar 

  20. Capyk JK, D’Angelo I, Strynadka NC, Eltis LD (2009) J Biol Chem 284:9937–9946. doi:10.1074/jbc.M900719200

    Google Scholar 

  21. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Biochim Biophys Acta 1770:330–344. doi:10.1016/j.bbagen.2006.07.017

    Google Scholar 

  22. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, Jacobs WR Jr, Eltis LD, Mohn WW (2009) J Biol Chem 284:35534–35542. doi:10.1074/jbc.M109.072132

    Google Scholar 

  23. Batie CJ, Ballou DP, Correll CC (1991) In: Muller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, pp 543–556

  24. Werlen C, Kohler HP, van der Meer JR (1996) J Biol Chem 271:4009–4016

    Article  PubMed  CAS  Google Scholar 

  25. Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T (2001) Biosci Biotechnol Biochem 65:254–263

    Article  PubMed  CAS  Google Scholar 

  26. Kweon O, Kim SJ, Baek S, Chae JC, Adjei MD, Baek DH, Kim YC, Cerniglia CE (2008) BMC Biochem 9:11. doi:10.1186/1471-2091-9-11

  27. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Trends Biochem Sci 25:300–302. doi:10.1016/S0968-0004(00)01561-9

    Google Scholar 

  28. Russell RB, Barton GJ (1992) Proteins 14:309–323. doi:10.1002/prot.340140216

    Google Scholar 

  29. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) BMC Bioinform 7:382. doi:10.1186/1471-2105-7-382

  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Google Scholar 

  31. Gouy M, Guindon S, Gascuel O (2010) Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259

    Google Scholar 

  32. Felsenstein J (1989) Cladistics 5:164–166

    Google Scholar 

  33. Edgar RC (2004) Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh34032/5/1792

    Google Scholar 

  34. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) BMC Bioinform 8:460. doi:10.1186/1471-2105-8-460

  35. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious version 5.5. http://www.geneious.com

  36. Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F, Nitschke W (2006) Mol Biol Evol 23:1180–1191. doi:10.1093/molbev/msk010

    Google Scholar 

  37. Talavera G, Castresana J (2007) Syst Biol 56:564–577

    Google Scholar 

  38. Holm L, Kaariainen S, Rosenstrom P, Schenkel A (2008) Bioinformatics 24:2780–2781. doi:10.1093/bioinformatics/btn507

    Google Scholar 

  39. Radauer C, Lackner P, Breiteneder H (2008) BMC Evol Biol 8:286. doi:10.1186/1471-2148-8-286

  40. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) Pharmacogenetics 6:1–42

    Article  PubMed  CAS  Google Scholar 

  41. Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S (2009) Acta Crystallogr D Biol Crystallogr 65:24–33. doi:10.1107/S0907444908036524

    Google Scholar 

  42. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Science 299:1039–1042. doi:10.1126/science.1078020299/5609/1039

    Google Scholar 

  43. Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H, Ramaswamy S (2005) J Mol Biol 348:1139–1151. doi:10.1016/j.jmb.2005.03.052

    Google Scholar 

  44. Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007) FEBS J 274:2470–2481. doi:10.1111/j.1742-4658.2007.05783.x

  45. Ferraro DJ, Brown EN, Yu CL, Parales RE, Gibson DT, Ramaswamy S (2007) BMC Struct Biol 7:10. doi:10.1186/1472-6807-7-10

  46. Martins BM, Svetlitchnaia T, Dobbek H (2005) Structure 13:817–824

    Google Scholar 

  47. Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T (2005) J Mol Biol 351:355–370

    Google Scholar 

  48. Inoue K, Ashikawa Y, Umeda T, Abo M, Katsuki J, Usami Y, Noguchi H, Fujimoto Z, Terada T, Yamane H, Nojiri H (2009) J Mol Biol 392:436–451

    Google Scholar 

  49. Gakhar L, Malik ZA, Allen CC, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) J Bacteriol 187:7222–7231. doi:10.1128/JB.187.21.7222-7231.2005

    Google Scholar 

  50. Dumitru R, Jiang WZ, Weeks DP, Wilson MA (2009) J Mol Biol 392:498–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay D. Eltis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capyk, J.K., Eltis, L.D. Phylogenetic analysis reveals the surprising diversity of an oxygenase class. J Biol Inorg Chem 17, 425–436 (2012). https://doi.org/10.1007/s00775-011-0865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0865-9

Keywords

Navigation