Skip to main content

Advertisement

Log in

Increasing the activity of copper(II) complexes against Leishmania through lipophilicity and pro-oxidant ability

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper complexes with fluorinated β-diketones were synthesized and characterized in terms of lipophilicity and peroxide-assisted oxidation of dihydrorhodamine as an indicator of redox activity. The biological activity of the complexes was tested against promastigotes of Leishmania amazonensis. Inhibition of trypanosomatid-specific trypanothione reductase was also tested. It was found that the highly lipophilic and redox-active bis(trifluoroacetylacetonate) derivative had increased toxicity towards promastigotes. These results indicate that it is possible to modulate the activity of metallodrugs based on redox-active metals through the appropriate choice of lipophilic chelators in order to design new antileishmanials. Further work will be necessary to improve selectivity of these compounds against the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cruz AK, de Toledo JS, Falade M, Terrao MC, Kamchonwongpaisan S, Kyle DE, Uthaipibull C (2009) Curr Drug Targets 10:178–192

    Article  PubMed  CAS  Google Scholar 

  2. Fricker SP (2010) Metallomics 2:366–377

    Article  PubMed  CAS  Google Scholar 

  3. Mukhopadhyay R, Beitz E (2010) In: Mips and their role in the exchange of metalloids, pp 57–70

  4. Lima AKC, Elias CGR, Souza JEO, Santos ALS, Dutra PML (2009) Parasitology 136:1179–1191

    Article  PubMed  CAS  Google Scholar 

  5. Vieites M, Smircich P, Parajon-Costa B, Rodriguez J, Galaz V, Olea-Azar C, Otero L, Aguirre G, Cerecetto H, Gonzalez M, Gomez-Barrio A, Garat B, Gambino D (2008) J Biol Inorg Chem 13:723–735

    Article  PubMed  CAS  Google Scholar 

  6. Baiocco P, Colotti G, Franceschini S, Ilari A (2009) J Med Chem 52:2603–2612

    Article  PubMed  CAS  Google Scholar 

  7. Wyllie S, Cunningham ML, Fairlamb AH (2004) J Biol Chem 279:39925–39932

    Article  PubMed  CAS  Google Scholar 

  8. Cunningham ML, Fairlamb AH (1995) Eur J Biochem 230:460–468

    Article  PubMed  CAS  Google Scholar 

  9. Castro-Pinto DB, Genestra M, Menezes GB, Waghabi M, Gonçalves A, Del Cristia CN, Sant’Anna CMR, Leon LL, Mendonça-Lima L (2008) Arch Microbiol 189:375–384

    Article  PubMed  CAS  Google Scholar 

  10. Fairlamb AH, Cerami A (1985) Mol Biochem Parasitol 14:187–198

    Article  PubMed  CAS  Google Scholar 

  11. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Science 227:1485–1487

    Article  PubMed  CAS  Google Scholar 

  12. Overbeck S, Rink L, Haase H (2008) Arch Immunol Ther Exp 56:15–30

    Article  CAS  Google Scholar 

  13. Jacques I, Andrews NW, Huynh C (2010) Mol Biochem Parasitol 170:28–36

    Article  PubMed  CAS  Google Scholar 

  14. Sen G, Mukhopadhyay S, Ray M, Biswas T (2008) J Antimicrob Chemother 61:1066–1075

    Article  PubMed  CAS  Google Scholar 

  15. Fricker SP, Mosi RM, Cameron BR, Baird I, Zhu YB, Anastassov V, Cox J, Doyle PS, Hansell E, Lau G, Langille J, Olsen M, Qin L, Skerlj R, Wong RSY, Santucci Z, McKerrow JH (2008) J Inorg Biochem 102:1839–1845

    Article  PubMed  CAS  Google Scholar 

  16. Soares MBP, Costa JFO, de Sa MS, Ribeiro-Dos-Santos R, Pigeon P, Jaouen G, Santana AEG, Goulart MOF, Hillard E (2010) Drug Dev Res 71:69–75

    CAS  Google Scholar 

  17. Navarro M, Cisneros-Fajardo EJ, Sierralta A, Fernandez-Mestre M, Silva P, Arrieche D, Marchan E (2003) J Biol Inorg Biochem 8:401–408

    CAS  Google Scholar 

  18. Navarro M (2009) Coord Chem Rev 253:1619–1626

    Article  CAS  Google Scholar 

  19. Navarro M, Hernandez C, Colmenares I, Hernandez P, Fernandez M, Sierraalta A, Marchan E (2007) J Inorg Biochem 101:111–116

    Article  PubMed  CAS  Google Scholar 

  20. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Crit Rev Ther Drug Carrier Syst 26:523–580

    PubMed  CAS  Google Scholar 

  21. Eroy-Reveles AA, Mascharak PK (2009) Future Med Chem 1:1497–1507

    Article  PubMed  CAS  Google Scholar 

  22. Genestra M, Soares-Bezerra RJ, Gomes-Silva L, Fabrino DL, Bellato-Santos T, Castro-Pinto DB, Canto-Cavalheiro MM, Leon LL (2008) Cell Biochem Funct 26:709–717

    Article  PubMed  CAS  Google Scholar 

  23. Maffei RD, Yokoyama-Yasunaka JKU, Miguel DC, Uliana SRB, Esposito BP (2009) Biometals 22:1095–1101

    Article  Google Scholar 

  24. Hummadi Y, Najim RA, Al-Bashir NM (2005) Exp Parasitol 111:47–54

    Article  Google Scholar 

  25. Dea-Ayuela MA, Castillo E, Gonzalez-Alvarez M, Vega C, Rolon M, Bolas-Fernandez F, Borras J, Gonzalez-Rosende ME (2009) Bioorg Med Chem 17:7449–7456

    Article  PubMed  CAS  Google Scholar 

  26. Namazi MR (2008) Ind J Med Res 127:193–194

    CAS  Google Scholar 

  27. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

  28. Frelon S, Douki T, Favier A, Cadet J (2003) Chem Res Toxicol 16:191–197

    Article  PubMed  CAS  Google Scholar 

  29. Mylonas M, Malandrinos G, Plakatouras J, Hadjiliadis N, Kasprzak KS, Krezel A, Bal W (2001) Chem Res Toxicol 14:1177–1183

    Article  PubMed  CAS  Google Scholar 

  30. Ogasawara MA, Zhang H (2009) Antioxid Redox Signal 11:1107–1122

    Article  PubMed  CAS  Google Scholar 

  31. Gius D, Mattson D, Bradbury CM, Smart DK, Spitz DR (2004) Int J Hyperthermia 20:213–223

    Article  PubMed  CAS  Google Scholar 

  32. Decaudin D, Marzo I, Brenner C, Kroemer G (1998) Int J Oncol 12:141–152

    PubMed  CAS  Google Scholar 

  33. Ge Y, Byun JS, De Luca P, Gueron G, Yabe IM, Sadiq-Ali SG, Figg WD, Quintero J, Haggerty CM, Li QQ, De Siervi A, Gardner K (2008) Mol Pharmacol 74:872–883

    Article  PubMed  CAS  Google Scholar 

  34. Belford RL, Martell AE, Calvin M (1956) J Inorg Nucl Chem 2:11–31

    Article  CAS  Google Scholar 

  35. Harju L, Sara R (1974) Anal Chim Acta 73:129–139

    Article  CAS  Google Scholar 

  36. Dearden J, Bresnen G (1988) Quant Struct Act Relat 7:133–144

    Article  CAS  Google Scholar 

  37. Esposito BP, Breuer W, Slotki I, Cabantchik ZI (2002) Eur J Clin Invest 32:42–49

    Article  PubMed  CAS  Google Scholar 

  38. Hamilton CJ, Saravanamuthu A, Eggleston IM, Fairlamb AH (2003) Biochem J 369:529–537

    Article  PubMed  CAS  Google Scholar 

  39. Miguel DC, Yokoyama-Yasunaka JKU, Andreoli WK, Mortara RA, Uliana SRB (2007) J Antimicrob Chemother 60:526–534

    Article  PubMed  CAS  Google Scholar 

  40. Maverick AW, Fronczek FR, Maverick EF, Billodeaux DR, Cygan ZT, Isovitsch RA (2002) Inorg Chem 41:6488–6492

    Article  PubMed  CAS  Google Scholar 

  41. Baosic R, Radojevic A, Radulovic M, Miletic S, Natic M, Tesic Z (2008) Biomed Chromatogr 22:379–386

    Article  PubMed  CAS  Google Scholar 

  42. Chohan ZH, Arif M, Akhtar MA, Supuran CT (2006) Bioinorg Chem Appl

  43. Baum L, Ng A (2004) J Alzheimers Dis 6:367–377

    PubMed  CAS  Google Scholar 

  44. Maurya RC, Verma R, Singh H (2003) Synth React Inorg Met Org Chem 33:1063–1080

    Article  CAS  Google Scholar 

  45. Giri U, Iqbal M, Athar M (1999) Int J Oncol 14:799–806

    PubMed  CAS  Google Scholar 

  46. White VE, Knowles CJ (2003) Int Biodeterior Biodegrad 52:143–150

    Article  CAS  Google Scholar 

  47. Keen CL, Saltman P, Hurley LS (1980) Am J Clin Nutr 33:1789–1800

    PubMed  CAS  Google Scholar 

  48. Esposito BP, Faljoni-Alario A, de Menezes JFS, de Brito HF, Najjar R (1999) J Inorg Biochem 75:55–61

    Article  PubMed  CAS  Google Scholar 

  49. Calvin M, Wilson W (1945) J Am Chem Soc 67:2003–2007

    Article  CAS  Google Scholar 

  50. Martell AE, Smith RM (1974) Critical stability constants. Plenum Press, New York

    Google Scholar 

  51. Esposito BP (2007) Braz J Nutr 20:379–385

    CAS  Google Scholar 

  52. Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI (2003) Blood 102:2670–2677

    Article  PubMed  CAS  Google Scholar 

  53. Rangel EB, Esposito BP, Carneiro FD, Mallet AC, Matos ACC, Andreoli MCC, Guimaraes-Souza NK, Santos BFC (2010) Ther Apher Dial 14:186–192

    Article  PubMed  CAS  Google Scholar 

  54. Do Amaral S, Esposito BP (2008) Biometals 21:425–432

    Article  PubMed  CAS  Google Scholar 

  55. Silva SBL, Arndt A, Esposito BP (2010) J Water Res Prot 2:209–213

    Article  Google Scholar 

  56. American Chemical Society (2007) SciFinder Scholar, version 2007. American Chemical Society, Washington

  57. Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT (1992) Biochem J 286:9–11

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Raúl Hernández helped us with the statistical analysis. This project was funded by CNPq and FAPESP (Brazilian government agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno Pannia Espósito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portas, A.d.S., Miguel, D.C., Yokoyama-Yasunaka, J.K.U. et al. Increasing the activity of copper(II) complexes against Leishmania through lipophilicity and pro-oxidant ability. J Biol Inorg Chem 17, 107–112 (2012). https://doi.org/10.1007/s00775-011-0834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0834-3

Keywords

Navigation