Skip to main content

Advertisement

Log in

The mechanism for heme to prevent Aβ1–40 aggregation and its cytotoxicity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The β-amyloid peptide (Aβ) aggregation in the brain, known as amyloid plaques, is a hallmark of Alzheimer’s disease (AD). The aberrant interaction of Cu2+ ion with Aβ potentiates AD by inducing Aβ aggregation and generating neurotoxic reactive oxygen species (ROS). In this study, the biosynthesized recombinant Aβ1–40 was, for the first time, used to investigate the mechanism for heme to prevent Aβ1–40 aggregation and its cytotoxicity. Cell viability studies of SH-SY5Y cells and rat primary hippocampal neurons showed that exogenous heme can protect the cells by reducing cytotoxicity in the presence of Cu2+ and/or Aβ1–40. UV–vis spectroscopy, circular dichroism spectroscopy, and differential pulse voltammetry were applied to examine the interaction between heme and Aβ1–40. It was proven that a heme–Aβ1–40 complex is formed and can stabilize the α-helix structure of Aβ1–40 to inhibit Aβ1–40 aggregation. The heme–Aβ1–40 complex possesses peroxidase activity and it may catalyze the decomposition of H2O2, reduce the generation of ROS downstream, and ultimately protect the cells. These results indicated that exogenous heme is able to alleviate the cytotoxicity induced by Aβ1–40 and Cu2+. This information may be a foundation to develop a potential strategy to treat AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goedert M, Maria GS (2006) Science 314:777–784

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ (1997) Science 275:630–631

    Article  PubMed  CAS  Google Scholar 

  3. Kirschner DA, Abraham C, Swlkoe DJ (1986) Proc Natl Acad Sci USA 83(2):503–507

    Article  PubMed  CAS  Google Scholar 

  4. Mori H, Takio K, Ogawara M (1992) J Biol Chem 267:17082–17086

    PubMed  CAS  Google Scholar 

  5. Prelli F, Castano E et al (1998) J Neurochem 51:648–651

    Article  Google Scholar 

  6. Vassar R (2004) J Mol Neurosci 23:105–114

    Article  PubMed  CAS  Google Scholar 

  7. Iwatsubo T (2004) Curr Opin Neurobiol 14:379–383

    Article  PubMed  CAS  Google Scholar 

  8. Shoji M, Golde TE (1992) Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  9. Walsh DM, Selkoe DJ (2007) J Neurochem 10:1172–1184

    Article  Google Scholar 

  10. Vigopelfrey C, Lee D (1993) J Neurochem 61:1965–1986

    Article  CAS  Google Scholar 

  11. Hardy J (1997) Trends Neurosci 20:154–159

    Article  PubMed  CAS  Google Scholar 

  12. Hardy J, Selkoe DJ (2002) Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  13. Klein WL, Stine WB (2004) Neurobiol Aging 25:569–580

    Article  PubMed  CAS  Google Scholar 

  14. Naslund J, Haroutunian V, Mohs R (2000) JAMA 283:1571–1577

    Article  PubMed  CAS  Google Scholar 

  15. Kayed R, Head E, Thompson JL (2003) Science 200:486–489

    Article  Google Scholar 

  16. Walsh DM, Klyubin L, Fadeeva JV (2002) Biochem Soc Trans 30:552–557

    Article  PubMed  CAS  Google Scholar 

  17. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) J Biol Chem 280(17):17294–17300

    Article  PubMed  CAS  Google Scholar 

  18. Deshpande A, Mina E, Glabe C, Busciglio J (2006) J Neurosci 26(22):6011–6018

    Article  PubMed  CAS  Google Scholar 

  19. Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M (2006) Free Radic Biol Med 41:202–212

    Article  PubMed  CAS  Google Scholar 

  20. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) Biochemistry 39(35):10831–10839

    Article  PubMed  CAS  Google Scholar 

  21. Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, Laferla FM (2006) J Biol Chem 281(3):1599–1604

    Article  PubMed  CAS  Google Scholar 

  22. Yan Y, Wang C (2008) Curr Alzheimer Res 5(6):548–554

    Article  PubMed  CAS  Google Scholar 

  23. Bush AI (2003) Alzheimer Dis Assoc Disord 17:147–150

    Article  PubMed  Google Scholar 

  24. Ritchic CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A et al (2003) Arch Neurol (Chicago) 60(12):1685–1691

    Article  Google Scholar 

  25. Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Brain Res 1000:32–39

    Article  PubMed  CAS  Google Scholar 

  26. Atamana H, Frey WH (2004) Proc Natl Acad Sci USA 101:11153–11158

    Article  Google Scholar 

  27. Atamna H, Liu JK, Ames BN (2001) J Biol Chem 276(51):48410–48416

    PubMed  CAS  Google Scholar 

  28. Atamna H, Killilea DW (2002) Proc Natl Acad Sci USA 99:14807–14812

    Article  PubMed  CAS  Google Scholar 

  29. Atamna H, Kathleen B (2006) Proc Natl Acad Sci USA 103:3381–3386

    Article  PubMed  CAS  Google Scholar 

  30. Atamna H, Frey WH (2007) Mitochondrion 7:297–310

    Article  PubMed  CAS  Google Scholar 

  31. Atamna H (2006) J Alzheimers Dis 10:255–266

    PubMed  Google Scholar 

  32. Atamna H, Frey WH, Ko N (2009) Arch Biochem Biophys 487:59–65

    Article  PubMed  CAS  Google Scholar 

  33. Levine H (1993) Protein Sci 2(3):404–410

    Article  PubMed  CAS  Google Scholar 

  34. Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang XD, Farrag YW, Perry G, Al Bush (2000) J Biol Chem 275:19439–19442

    Article  PubMed  CAS  Google Scholar 

  35. Weihua T, Jingliu Zh, Zongyang W, Mengmin H (2000) Acta Phytophysiol Sini 26(1):64–68

    Google Scholar 

  36. Hou LM, Kang I, Marchant RE, Zagorski MG (2002) J Biol Chem 277(43):40173–40176

    Article  PubMed  CAS  Google Scholar 

  37. Bitan G, Tarus B, Vollers SS, Lashuel HA, Condron MM, Straub JE, Teplow DB (2003) J Am Chem Soc 125(50):15359–15365

    Article  PubMed  CAS  Google Scholar 

  38. Guilloreau L, Combalbert S (2007) ChemBioChem 8:1317–1325

    Article  PubMed  CAS  Google Scholar 

  39. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) Biochemistry 38:7609–7616

    Article  PubMed  CAS  Google Scholar 

  40. Lloret A, Badía MC, Mora NJ, Ortega A, Pallardó FV, Alonso MD, Atamna H, Viña J (2008) Free Radic Biol Med 44(12):2019–2025

    Article  PubMed  CAS  Google Scholar 

  41. Khodarahmi Reza, Fardin N (2010) Arch Biochem Biophys 494:205–215

    Article  PubMed  CAS  Google Scholar 

  42. Ding Z-C (2008) Study of the structure–properties–function relationship of neuronal growth inhibitory factor and the mechanism of amyloid peptide neurotoxicity. PhD thesis, Fudan University, pp 129–135

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (no. 20771029; no. 29281005), Shanghai Pujiang Talent Project (08pj14017), Shanghai Leading Academic Discipline Project (B108), and the Program for the Platform of New Medicine Creation (no. 2009ZX09301-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangshi Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Q., Luo, Y., Li, W. et al. The mechanism for heme to prevent Aβ1–40 aggregation and its cytotoxicity. J Biol Inorg Chem 16, 809–816 (2011). https://doi.org/10.1007/s00775-011-0783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0783-x

Keywords

Navigation