Skip to main content

Advertisement

Log in

Substitution of aspartic acid with glutamic acid at position 67 of the BRCA1 RING domain retains ubiquitin ligase activity and zinc(II) binding with a reduced transition temperature

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Breast cancer susceptibility protein 1 (BRCA1) participates in genomic integrity maintenance through DNA repair, cell cycle checkpoint, protein ubiquitination, and transcriptional regulation. The N-terminus of BRCA1 contains a RING domain which forms two Zn2+ binding sites in an interleaved fashion. A number of deleterious BRCA1 missense mutations, which predispose an individual to a subset of hereditary breast and ovarian cancers, have been identified in the RING domain. Disruption of Zn2+ binding sites and protein structure results in the inactivation of BRCA1 tumor suppression function. An unprecedented D67E BRCA1 mutation, identified in Thai familial breast cancer patients, is located in the vicinity of Zn2+ binding site II, and its pathogenic significance remains elusive. The present study revealed that the D67E BRCA1 RING protein assumes a preformed structure in the absence of Zn2+. The Zn2+-bound mutant protein was more folded, resulting in enhanced proteolytic resistance and dimerization. This indicated that the mutation retained Zn2+ binding, and barely perturbed the native global structure of the BRCA1 RING domain. The complex between D67E BRCA1 and BARD1 RING domains exhibited a substantial ubiquitin ligase activity compared with a defective complex containing the C61G BRCA1 mutation. However, the D67E mutation was slightly less stable toward thermal denaturation. This implies that the D67E mutation might be a neutral or mild cancer-risk modifier of other defective mechanisms underlying BRCA1-mutation-related breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Science 250:1684–1689

    Article  CAS  PubMed  Google Scholar 

  2. Ford D, Easton DF, Peto J (1995) Am J Hum Genet 57:1457–1462

    CAS  PubMed  Google Scholar 

  3. Gudmundsdottir K, Ashworth A (2006) Oncogene 25:5864–5874

    Article  CAS  PubMed  Google Scholar 

  4. Huen MSY, Sy SMH, Chen J (2010) Nat Rev Mol Cell Biol 11:138–148

    Article  CAS  PubMed  Google Scholar 

  5. O’Donovan PJ, Livingston DM (2010) Carcinogenesis 31:961–967

    Article  PubMed  Google Scholar 

  6. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Nat Struct Biol 8:833–837

    Article  CAS  PubMed  Google Scholar 

  7. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP (2007) Trends Biochem Sci 32:63–79

    Article  CAS  PubMed  Google Scholar 

  8. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MCW, Hwang LY, Bowcock AM, Baer R (1996) Nat Genet 14:430–440

    Article  CAS  PubMed  Google Scholar 

  9. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM (1997) Cell 90:425–435

    Article  CAS  PubMed  Google Scholar 

  10. Henderson BR (2005) Bioessays 27:884–893

    Article  CAS  PubMed  Google Scholar 

  11. Mok MTS, Henderson BR (2010) Cell Signal 22:47–56

    Article  CAS  PubMed  Google Scholar 

  12. Brodie KM, Henderson BR (2010) Cell Signal 22:291–302

    Article  CAS  PubMed  Google Scholar 

  13. Ruffner H, Joazeiro CAP, Hemmati D, Hunter T, Verma IM (2001) Proc Natl Acad Sci USA 98:5134–5139

    Article  CAS  PubMed  Google Scholar 

  14. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T (2001) J Biol Chem 276:14537–14540

    Article  CAS  PubMed  Google Scholar 

  15. Chen A, Kleiman FE, Manley JL, Ouchi T, Pan Z-Q (2002) J Biol Chem 277:22085–22092

    Article  CAS  PubMed  Google Scholar 

  16. Wu-Baer F, Lagrazon K, Yuan W, Baer R (2003) J Biol Chem 278:34743–34746

    Article  CAS  PubMed  Google Scholar 

  17. Nishikawa H, Ooka S, Sato K, Arima K, Okamoto J, Klevit RE, Fukada M, Ohta T (2004) J Biol Chem 279:3916–3924

    Article  CAS  PubMed  Google Scholar 

  18. Wu-Baer F, Ludwig T, Baer R (2010) Mol Cell Biol 30:2787–2798

    Article  CAS  PubMed  Google Scholar 

  19. Starita LM, Horwitz AA, Keogh MC, Ishioka C, Parvin JD, Chiba N (2005) J Biol Chem 280:24498–24505

    Article  CAS  PubMed  Google Scholar 

  20. Wu W, Nishikawa H, Hayami R, Sato K, Honda A, Aratani S, Nakajima T, Fukuda M, Ohta T (2007) Cancer Res 67:951–958

    Article  CAS  PubMed  Google Scholar 

  21. Horwitz AA, Affar EB, Heine GF, Shi Y, Parvin JD (2007) Proc Natl Acad Sci USA 104:6614–6619

    Article  CAS  PubMed  Google Scholar 

  22. Wu W, Koike A, Takeshita T, Ohta T (2008) Cell Div 3:1

    Article  CAS  PubMed  Google Scholar 

  23. Thakar A, Parvin JD, Zlatanova J (2010) J Biomol Struct Dyn 27:399–406

    CAS  PubMed  Google Scholar 

  24. Foulkes WD (2010) N Engl J Med 362:755–756

    Article  CAS  PubMed  Google Scholar 

  25. Brzovic PS, Meza JE, King MC, Klevit RE (2001) J Biol Chem 276:41399–41406

    Article  CAS  PubMed  Google Scholar 

  26. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D III, Fukuda M, Ohta T, Klevit RE (2003) Proc Natl Acad Sci USA 100:5646–5651

    Article  CAS  PubMed  Google Scholar 

  27. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama H, Weissman AM (1999) Proc Natl Acad Sci USA 96:11364–11369

    Article  CAS  PubMed  Google Scholar 

  28. Patmasiriwat P, Bhothisuwan K, Sinilnikova OM, Chopin S, Methakijvaroon S, Badzioch M, Padungsutt P, Vattanaviboon P, Vattanasapt V, Szabo CI, Saunders GF, Goldgar D, Lenoir GM (2002) Hum Mutat 20:230–236

    Article  PubMed  Google Scholar 

  29. Atipairin A, Canyuk B, Ratanaphan A (2010) Chem Biodivers 7:1949–1967

    Article  CAS  PubMed  Google Scholar 

  30. Engel G (1974) Anal Biochem 61:184–191

    Article  CAS  PubMed  Google Scholar 

  31. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  32. Provencher SW, Glöckner J (1981) Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  33. Greenfield NJ (2006) Nat Protoc 1:2876–2890

    Article  CAS  PubMed  Google Scholar 

  34. Matthews JM, Kowalski K, Liew CK, Sharpe BK, Fox AH, Crossley M, Mackay JP (2000) Eur J Biochem 267:1030–1038

    Article  CAS  PubMed  Google Scholar 

  35. Pjura P, Matthews BW (1993) Protein Sci 2:2226–2232

    Article  CAS  PubMed  Google Scholar 

  36. Xia Y, Pao GM, Chen H-W, Verma IM, Hunter T (2003) J Biol Chem 278:5255–5263

    Article  CAS  PubMed  Google Scholar 

  37. Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Kelvit RE (2006) Mol Cell 21:873–880

    Article  CAS  PubMed  Google Scholar 

  38. Mallery DL, Vandenberg CJ, Hiom K (2002) EMBO J 21:6755–6762

    Article  CAS  PubMed  Google Scholar 

  39. Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, Solomon E (2006) Hum Mol Genet 15:599–606

    Article  CAS  PubMed  Google Scholar 

  40. Pongsavee M, Patmasiriwat P, Saunders GF (2009) Int J Mol Sci 10:4187–4197

    Article  CAS  PubMed  Google Scholar 

  41. Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Proc Natl Acad Sci USA 104:5794–5799

    Article  CAS  PubMed  Google Scholar 

  42. Tsuzuki M, Wu W, Nishikawa H, Hayami R, Oyake D, Yabuki Y, Fukuda M, Ohta T (2006) Cancer Lett 233:108–116

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Ryser S, Dizin E, Pils D, Krainer M, Jefford CE, Bertoni F, Zeillinger R, Irminger-Finger I (2007) Cancer Res 67:11876–11885

    Article  CAS  PubMed  Google Scholar 

  44. Dizin E, Irminger-Finger I (2010) Int J Biochem Cell Biol 42:693–700

    Article  CAS  PubMed  Google Scholar 

  45. Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, Wilkinson KD, Maul GG, Barlev N, Berger SL, Prendergast GC, Rauscher FJ III (1998) Oncogene 16:1097–1112

    Article  CAS  PubMed  Google Scholar 

  46. Orlowski RZ, Dees EC (2003) Breast Cancer Res 5:1–7

    Article  CAS  PubMed  Google Scholar 

  47. Varshavsky A (2008) J Biol Chem 283:34469–34489

    Article  CAS  PubMed  Google Scholar 

  48. Kenny FS, Hui R, Musgrove EA, Gee JMW, Blamey RW, Nicholson RI, Sutherland RL, Robertson JFR (1999) Clin Cancer Res 5:2069–2076

    CAS  PubMed  Google Scholar 

  49. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A (1999) Endocr Rev 20:501–534

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Fan S, Li Z, Fu M, Rao M, Ma Y, Lisanti MP, Albanese C, Katzenellenbogen BS, Kushner PJ, Weber B, Rosen EM, Pestell RG (2005) Cancer Res 65:6557–6567

    Article  CAS  PubMed  Google Scholar 

  51. Gudas JM, Nguyen H, Li T, Cowan KH (1995) Cancer Res 55:4561–4565

    CAS  PubMed  Google Scholar 

  52. Kehn K, Berro R, Alhaj A, Bottazzi ME, Yeh W-I, Klase Z, Duyne RV, Fu S, Kashanchi F (2007) Oncogene 26:5060–5069

    Article  CAS  PubMed  Google Scholar 

  53. Wu W, Sato K, Koike A, Nishikawa H, Koizumi H, Venkitaraman AR, Ohta T (2010) Cancer Res 70:6384–6392

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Synchrotron Light Research Institute (1-2548/LS01) and the National Research Council of Thailand (PHA530097S). We would like to thank Udo Heinemann for kind assistance and support, and Rolf Misselwitz and Sandro Keller for CD discussions. The Max-Delbrück Center for Molecular Medicine (Berlin, Germany) and the Pharmaceutical Laboratory Service Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University are also acknowledged for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adisorn Ratanaphan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atipairin, A., Canyuk, B. & Ratanaphan, A. Substitution of aspartic acid with glutamic acid at position 67 of the BRCA1 RING domain retains ubiquitin ligase activity and zinc(II) binding with a reduced transition temperature. J Biol Inorg Chem 16, 217–226 (2011). https://doi.org/10.1007/s00775-010-0718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0718-y

Keywords

Navigation