Skip to main content

Advertisement

Log in

Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The ruthenium compound KP1019 has demonstrated promising anticancer activity in a pilot clinical trial. This study aims to evaluate the intracellular uptake/binding patterns of KP1019 and its sodium salt KP1339, which is currently in a phase I–IIa study. Although KP1339 tended to be moderately less cytotoxic than KP1019, IC50 values in several cancer cell models revealed significant correlation of the cytotoxicity profiles, suggesting similar targets for the two drugs. Accordingly, both drugs activated apoptosis, indicated by caspase activation via comparable pathways. Drug uptake determined by inductively coupled plasma mass spectrometry (ICP-MS) was completed after 1 h, corresponding to full cytotoxicity as early as after 3 h of drug exposure. Surprisingly, the total cellular drug uptake did not correlate with cytotoxicity. However, distinct differences in intracellular distribution patterns suggested that the major targets for the two ruthenium drugs are cytosolic rather than nuclear. Consequently, drug–protein binding in cytosolic fractions of drug-treated cells was analyzed by native size-exclusion chromatography (SEC) coupled online with ICP-MS. Ruthenium–protein binding of KP1019- and KP1339-treated cells distinctly differed from the platinum binding pattern observed after cisplatin treatment. An adapted SEC-SEC-ICP-MS system identified large protein complexes/aggregates above 700 kDa as initial major binding partners in the cytosol, followed by ruthenium redistribution to the soluble protein weight fraction below 40 kDa. Taken together, our data indicate that KP1019 and KP1339 rapidly enter tumor cells, followed by binding to larger protein complexes/organelles. The different protein binding patterns as compared with those for cisplatin suggest specific protein targets and consequently a unique mode of action for the ruthenium drugs investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GSH:

Glutathione

HMW/LMW:

Ruthenium-content ratio between the high molecular weight fraction and the low molecular weight fraction

ICP-MS:

Inductively coupled plasma mass spectrometry

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide

KP1019:

Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]

KP1339:

Sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]

PARP:

Poly(ADP-ribosyl)polymerase

PBS:

Phosphate-buffered saline

SEC:

Size-exclusion chromatography

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206

    Article  CAS  PubMed  Google Scholar 

  2. Heffeter P, Jungwirth U, Jakupec M, Hartinger C, Galanski M, Elbling L, Micksche M, Keppler B, Berger W (2008) Drug Resist Updat 11:1–16

    Article  CAS  PubMed  Google Scholar 

  3. Cossa G, Gatti L, Zunino F, Perego P (2009) Curr Med Chem 16:2355–2365

    Article  CAS  PubMed  Google Scholar 

  4. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) J Inorg Biochem 100:891–904

    Article  CAS  PubMed  Google Scholar 

  5. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) Cancer Lett 226:115–121

    Article  CAS  PubMed  Google Scholar 

  6. Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L, Keppler BK, Marian B (2004) J Cancer Res Clin Oncol 226:115–121

    Google Scholar 

  7. Cetinbas N, Webb MI, Dubland JA, Walsby CJ (2010) J Biol Inorg Chem 15:131–145

    Google Scholar 

  8. Sulyok M, Hann S, Hartinger CG, Keppler BK, Stingeder G, Koellensperger G (2005) J Anal At Spectrom 20:856–863

    Article  CAS  Google Scholar 

  9. MacKenzie EL, Iwasaki K, Tsuji Y (2008) Antioxid Redox Signal 10:997–1030

    Article  CAS  PubMed  Google Scholar 

  10. Heffeter P, Pongratz M, Steiner E, Chiba P, Jakupec MA, Elbling L, Marian B, Korner W, Sevelda F, Micksche M, Keppler BK, Berger W (2005) J Pharmacol Exp Ther 312:281–289

    Article  CAS  PubMed  Google Scholar 

  11. Lipponer KG, Vogel E, Keppler BK (1996) Met Based Drugs 3:243–260

    Article  CAS  PubMed  Google Scholar 

  12. Peti W, Pieper T, Sommer, Keppler BK, Giester G (1999) Eur J Inorg Chem 1551–1555

  13. Heffeter P, Jakupec MA, Korner W, Wild S, von Keyserlingk NG, Elbling L, Zorbas H, Korynevska A, Knasmuller S, Sutterluty H, Micksche M, Keppler BK, Berger W (2006) Biochem Pharmacol 71:426–440

    Article  CAS  PubMed  Google Scholar 

  14. Sagmeister S, Eisenbauer M, Pirker C, Mohr T, Holzmann K, Zwickl H, Bichler C, Kandioler D, Wrba F, Mikulits W, Gerner C, Shehata M, Majdic O, Streubel B, Berger W, Micksche M, Zatloukal K, Schulte-Hermann R, Grasl-Kraupp B (2008) Br J Cancer 99:151–159

    Article  CAS  PubMed  Google Scholar 

  15. Janson V, Andersson B, Behnam-Motlagh P, Engstrom KG, Henriksson R, Grankvist K (2008) Cell Physiol Biochem 22:45–56

    Article  CAS  PubMed  Google Scholar 

  16. Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW, Vogelstein B, Lengauer C (2002) Cancer Res 62:1129–1133

    CAS  PubMed  Google Scholar 

  17. Egger A, Rappel C, Jakupec MA, Hartinger CG, Heffeter P, Keppler BK (2009) J Anal At Spectrom 24:51–61

    Article  CAS  Google Scholar 

  18. Koellensperger G, Daubert S, Erdmann R, Hann S, Rottensteiner HP (2007) Chem Biol 388:1209–1214

    Article  CAS  Google Scholar 

  19. Heffeter P, Jakupec MA, Korner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterluty H, Micksche M, Keppler BK, Berger W (2007) Biochem Pharmacol 73:1873–1886

    Article  CAS  PubMed  Google Scholar 

  20. Berger W, Elbling L, Micksche M (2000) Int J Cancer 88:293–300

    Article  CAS  PubMed  Google Scholar 

  21. Korynevska A, Heffeter P, Matselyukh B, Elbling L, Micksche M, Stoika R, Berger W (2007) Biochem Pharmacol 74:1713–1726

    Article  CAS  PubMed  Google Scholar 

  22. Hall AG (1999) Adv Exp Med Biol 457:199–203

    CAS  PubMed  Google Scholar 

  23. Hann S, Obinger C, Stingeder G, Paumann M, Furtmüller PG, Koellensperger G (2006) J Anal At Spectrom 21:1224–1231

    Article  CAS  Google Scholar 

  24. Pizarro AM, Sadler PJ (2009) Biochimie 91:1198–1211

    Article  CAS  PubMed  Google Scholar 

  25. Sakurai H, Okamoto M, Hasegawa M, Satoh T, Oikawa M, Kamiya T, Arakawa K, Nakano T (2008) Cancer Sci 99:901–904

    Article  CAS  PubMed  Google Scholar 

  26. Pawarode A, Shukla S, Minderman H, Fricke SM, Pinder EM, O’Loughlin KL, Ambudkar SV, Baer MR (2007) Cancer Chemother Pharmacol 60:179–188

    Article  CAS  PubMed  Google Scholar 

  27. Brabec V, Novakova O (2006) Drug Resist Updat 9:111–122

    Article  CAS  PubMed  Google Scholar 

  28. Smalley KS, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS, Bregman H, Flaherty KT, Soengas MS, Meggers E, Herlyn M (2007) Cancer Res 67:209–217

    Article  CAS  PubMed  Google Scholar 

  29. Xie P, Williams DS, Atilla-Gokcumen GE, Milk L, Xiao M, Smalley KS, Herlyn M, Meggers E, Marmorstein R (2008) ACS Chem Biol 3:305–316

    Article  CAS  PubMed  Google Scholar 

  30. Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S (2009) PLoS One 4:e7112

    Article  PubMed  Google Scholar 

  31. Bergamo A, Sava G (2007) Dalton Trans 1267–1272

  32. Alessio E, Mestroni G, Bergamo A, Sava G (2004) Curr Top Med Chem 4:1525–1535

    Article  CAS  PubMed  Google Scholar 

  33. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 1796–1802

  34. Bursch W, Karwan A, Mayer M, Dornetshuber J, Frohwein U, Schulte-Hermann R, Fazi B, Di Sano F, Piredda L, Piacentini M, Petrovski G, Fesus L, Gerner C (2008) Toxicology 254:147–157

    Article  CAS  PubMed  Google Scholar 

  35. Jung T, Grune T (2008) IUBMB Life 60:743–752

    Article  CAS  PubMed  Google Scholar 

  36. Meng X, Leyva ML, Jenny M, Gross I, Benosman S, Fricker B, Harlepp S, Hebraud P, Boos A, Wlosik P, Bischoff P, Sirlin C, Pfeffer M, Loeffler JP, Gaiddon C (2009) Cancer Res 69:5458–5466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Vera Bachinger and Maria Eisenbauer for the skilful handling of cell cultures, Elisabeth Rabensteiner, Rosa-Maria Weiss, as well as Christian Balcarek for competent technical assistance, and Irene Herbacek for fluorescence-activated cell sorting analysis. Many thanks go to Rita Dornetshuber, Christian Hartinger, Leonilla Elbling, and Michael Jakupec for inspiring discussions. This work was performed within the Research Platform Translational Cancer Therapy Research Vienna and supported by the Austrian Science Fond grants L212 and L473, by Bürgermeister Fond der Stadt Wien grant 2460, as well as by FFG grant 811591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heffeter, P., Böck, K., Atil, B. et al. Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J Biol Inorg Chem 15, 737–748 (2010). https://doi.org/10.1007/s00775-010-0642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0642-1

Keywords

Navigation