Skip to main content
Log in

Spectroscopic and computational investigation of three Cys-to-Ser mutants of nickel superoxide dismutase: insight into the roles played by the Cys2 and Cys6 active-site residues

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nickel-dependent superoxide dismutase (NiSOD) is a member of a class of metalloenzymes that protect aerobic organisms from the damaging superoxide radical (O2 ·−). A distinctive and fascinating feature of NiSOD is the presence of active-site nickel–thiolate interactions involving the Cys2 and Cys6 residues. Mutation of one or both Cys residues to Ser prevents catalysis of O2 ·−, demonstrating that both residues are necessary to support proper enzymatic activity (Ryan et al., J Biol Inorg Chem, 2010). In this study, we have employed a combined spectroscopic and computational approach to characterize three Cys-to-Ser (Cys → Ser) mutants (C2S, C6S, and C2S/C6S NiSOD). Similar electronic absorption and magnetic circular dichroism spectra are observed for these mutants, indicating that they possess nearly identical active-site geometric and electronic structures. These spectroscopic data also reveal that the Ni2+ ion in each mutant adopts a high-spin (S = 1) configuration, characteristic of a five- or six-coordinate ligand environment, as opposed to the low-spin (S = 0) configuration observed for the four-coordinate Ni2+ center in the native enzyme. An analysis of the electronic absorption and magnetic circular dichroism data within the framework of density functional theory computations performed on a series of five- and six-coordinate C2S/C6S NiSOD models reveals that the active site of each Cys → Ser mutant possesses an essentially six-coordinate Ni2+ center with a rather weak axial bonding interaction. Factors contributing to the lack of catalytic activity displayed by the Cys → Ser NiSOD mutants are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B3LYP:

Becke’s three-parameter hybrid functional for exchange combined with the Lee–Yang–Par correlation functional

CD:

Circular dichroism

Cys → Ser:

Cysteine to serine

DFT:

Density functional theory

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

HOMO:

Highest occupied molecular orbital

INDO/S-CI:

Intermediate neglect of differential overlap/spectroscopic parameterization with configuration interaction

LF:

Ligand field

MCD:

Magnetic circular dichroism

MO:

Molecular orbital

NiSOD:

Nickel-dependent superoxide dismutase

NiSODox :

Oxidized nickel-dependent superoxide dismutase

NiSODred :

Reduced nickel-dependent superoxide dismutase

SOD:

Superoxide dismutase

TD-DFT:

Time-dependent density functional theory

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Imlay JA (2003) Annu Rev Microbiol 57:395–418

    PubMed  Google Scholar 

  2. Midorikawa K, Kawanishi S (2001) FEBS Lett 495:187–190

    PubMed  Google Scholar 

  3. Valentine JS, Wertz DL, Lyons TJ, Liou L-L, Goto JJ, Gralla EB (1998) Curr Opin Chem Biol 2:253–262

    PubMed  Google Scholar 

  4. Moller IM (2001) Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  Google Scholar 

  5. Simonian NA, Coyle JT (1996) Rev Pharmacol Toxicol 36:83–106

    Google Scholar 

  6. Beyer W, Imlay J, Fridovich I (1991) Prog Nucl Acid Res Mol Biol 40:221–253

    Google Scholar 

  7. Brown RHJ (1997) Cold Spring Harb Monogr Ser 34:569–585

    Google Scholar 

  8. Chatterjee S, Fisher AB (2005) In: Bagchi D, Preuss HG (eds) Phytopharmaceuticals in cancer chemoprevention. CRC Press, Boca Raton, pp 171–186

  9. Halliwell B (1990) Methods Enzymol 186:1–85

    PubMed  Google Scholar 

  10. Halliwell B (1995) In: Valentine JS, Foote CS, Greenberg A, Liebman JF (eds) Active oxygen in biochemistry. Blackie, New York, pp 313–335

  11. Jenner P, Olanow CW (1998) Ann Neurol 44:S72–S84

    PubMed  Google Scholar 

  12. Passi S, Ricci R, Aleo E, Cocchi M (2005) Prog Nutr 7:3–22

    Google Scholar 

  13. Trotti D, Rolfs A, Danbolt NC, Brown JRH, Hediger MA (1999) Nat Neurosci 2:427–433

    PubMed  Google Scholar 

  14. Wallace DC (1992) Science 256:628–632

    PubMed  Google Scholar 

  15. Valentine JS, Hart PJ (2003) Proc Natl Acad Sci USA 100:3617–3622

    PubMed  Google Scholar 

  16. Kurtz DM (2004) Acc Chem Res 37:902–908

    PubMed  Google Scholar 

  17. Miller AF (2004) Curr Opin Chem Biol 8:162–168

    PubMed  Google Scholar 

  18. Miller AF, Sorkin DL (1997) Commun Mol Cell Biophys 9:1–48

    Google Scholar 

  19. Fridovich I (1995) Annu Rev Biochem 64:97–112

    PubMed  Google Scholar 

  20. Fridovich I, William JL, Lane MD (2004) Encyclopedia of biological chemistry. Elsevier, New York, pp 135–138

  21. Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) Biochem J 318:889–896

    PubMed  Google Scholar 

  22. Youn HD, Youn H, Lee JW, Yim YI, Lee JK, Hah YC, Kang SO (1996) Arch Biochem Biophys 334:341–348

    PubMed  Google Scholar 

  23. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) Nature 424:1037–1042

    PubMed  Google Scholar 

  24. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Biochemistry 43:8038–8047

    PubMed  Google Scholar 

  25. Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Carugo KD (2004) Proc Natl Acad Sci USA 101:8569–8574

    PubMed  Google Scholar 

  26. Hart PJ, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS, Eisenberg D (1999) Biochemistry 38:2167–2178

    PubMed  Google Scholar 

  27. Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) Science 298:567–572

    PubMed  Google Scholar 

  28. Kovacs JA (2004) Chem Rev 104:825–848

    PubMed  Google Scholar 

  29. Chan Chung KC, Cao L, Dias AV, Pickering IJ, George GN, Zamble DB (2008) J Am Chem Soc 130:14056–14057

    Google Scholar 

  30. Harford C, Sarkar B (1997) Acc Chem Res 30:123–130

    Google Scholar 

  31. Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL (2000) Nat Struct Biol 7:876–880

    PubMed  Google Scholar 

  32. Chohan BS, Maroney MJ (2006) Inorg Chem 45:1906–1908

    PubMed  Google Scholar 

  33. Farmer PJ, Reibenspies JH, Lindahl PA, Darensbourg MY (1993) J Am Chem Soc 115:4665–4674

    Google Scholar 

  34. Farmer PJ, Solouki T, Mills DK, Soma T, Russell DH, Reibenspies JH, Darensbourg MY (1992) J Am Chem Soc 114:4601–4605

    Google Scholar 

  35. Grapperhaus CA, Darensbourg MY (1998) Acc Chem Res 31:451–459

    Google Scholar 

  36. Grapperhaus CA, Mullins CS, Kozlowski PM, Mashuta MS (2004) Inorg Chem 43:2859–2866

    PubMed  Google Scholar 

  37. Green KN, Brothers SM, Jenkins RM, Carson CE, Grapperhaus CA, Darensbourg MY (2007) Inorg Chem 46:7536–7544

    PubMed  Google Scholar 

  38. Kaasjager VE, Bouwman E, Gorter S, Reedijk J, Grapperhaus CA, Reibenspies JH, Smee JJ, Darensbourg MY, Derecskei-Kovacs A, Thomson LM (2002) Inorg Chem 41:1837–1844

    PubMed  Google Scholar 

  39. Kumar M, Colpas GJ, Day RO, Maroney MJ (1989) J Am Chem Soc 111:8323–8325

    Google Scholar 

  40. Bellefeuille JA, Grapperhaus CA, Derecskei-Kovacs A, Reibenspies JH, Darensbourg MY (2000) Inorg Chim Acta 300–302:73–81

    Google Scholar 

  41. Smee JJ, Miller ML, Grapperhaus CA, Reibenspies JH, Darensbourg MY (2001) Inorg Chem 40:3601–3605

    PubMed  Google Scholar 

  42. Allan CB, Davidson G, Choudhury SB, Gu Z, Bose K, Day RO, Maroney MJ (1998) Inorg Chem 37:4166–4167

    PubMed  Google Scholar 

  43. Fiedler AT, Bryngelson PA, Maroney MJ, Brunold TC (2005) J Am Chem Soc 127:5449–5462

    PubMed  Google Scholar 

  44. Neupane KP, Shearer J (2006) Inorg Chem 45:10552–10566

    PubMed  Google Scholar 

  45. Shearer J, Dehestani A, Abanda F (2008) Inorg Chem 47:2649–2660

    PubMed  Google Scholar 

  46. Maroney MJ (1999) Curr Opin Chem Biol 3:188–199

    PubMed  Google Scholar 

  47. Volbeda A (1995) Nature 373:580–587

    PubMed  Google Scholar 

  48. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Science 293:1281–1285

    PubMed  Google Scholar 

  49. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462

    PubMed  Google Scholar 

  50. Heddle J, Scott DJ, Unzai S, Park S-Y, Tame JRH (2003) J Biol Chem 278:50322–50329

    PubMed  Google Scholar 

  51. Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) Science 268:998–1004

    PubMed  Google Scholar 

  52. Song HK, Mulrooney SB, Huber R, Hausinger RP (2001) J Biol Chem 276:49359–49364

    PubMed  Google Scholar 

  53. Watt RK, Ludden PW (1999) Cell Mol Life Sci 56:604–625

    Google Scholar 

  54. Choudhury SB, Lee JW, Davidson G, Yim YI, Bose K, Sharma ML, Kang SO, Cabelli DE, Maroney MJ (1999) Biochemistry 38:3744–3752

    PubMed  Google Scholar 

  55. Herbst RW, Guce A, Bryngelson PA, Higgins KA, Rynan KC, Cabelli DE, Garman SC, Maroney MJ (2009) Biochemistry 48:3354–3369

    PubMed  Google Scholar 

  56. Barrette WC, Sawyer DT, Fee JA, Asada K (1983) Biochemistry 22:624–627

    PubMed  Google Scholar 

  57. Krueger HJ, Holm RH (1987) Inorg Chem 26:3645–3647

    Google Scholar 

  58. Krueger HJ, Peng G, Holm RH (1991) Inorg Chem 30:734–742

    Google Scholar 

  59. Ray D, Pal S, Chakravorty A (1986) Inorg Chem 25:2674–2677

    Google Scholar 

  60. Jackson TA, Brunold TC (2004) Acc Chem Res 37:461–470

    PubMed  Google Scholar 

  61. Xie J, Yikilmaz E, Miller AF, Brunold TC (2002) J Am Chem Soc 124:3769–3774

    PubMed  Google Scholar 

  62. Tietze D, Breitzke H, Imhof D, Kothe E, Weston J, Buntkowsky G (2009) Chem Eur J 15:517–523

    Google Scholar 

  63. Ryan KC, Johnson OE, Brunold TC, Johnson MK (2010) J Biol Inorg Chem. doi:10.1007/s00775-010-0645-y

  64. Park IS, Michel LO, Pearson MA, Jabri E, Karplus PA, Wang SK, Dong J, Scott RA, Koehler BP, Johnson MK, Hausinger RP (1996) J Biol Chem 271:18632–18637

    PubMed  Google Scholar 

  65. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51

    Google Scholar 

  66. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    Google Scholar 

  67. te Velde G, Baerends EJ (1992) J Comput Phys 99:84–98

    Google Scholar 

  68. te Velde G, Bickelhaupt FF, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Google Scholar 

  69. Versluis L, Ziegler T (1988) J Chem Phys 88:322–328

    Google Scholar 

  70. Vosko SH, WIlk L, Nusair M (1980) Can J Phys 58:1200

    Google Scholar 

  71. Becke AD (1993) J Chem Phys 98:5648–5652

    Google Scholar 

  72. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  73. Neese F (2005) ORCA 2.4. Max-Planck-Institut für Bioanorganische Chemie. Mülheim an der Ruhr

  74. Ridley J, Zerner MC (1973) Theor Chim Acta 32:111

    Google Scholar 

  75. Zerner MC, Loew GH, Kirchner RF, Muellerwesterhoff UT (1980) J Am Chem Soc 102:589–599

    Google Scholar 

  76. Bacon AD, Zerner MC (1979) Theor Chim Acta 53:21–54

    Google Scholar 

  77. Becke AD (1993) J Chem Phys 98:1372–1377

    Google Scholar 

  78. Lee C, Yang W, Parr RG (1988) Phys Rev B 37

  79. Schafer A, Horn H, Achlrichs R (1992) J Chem Phys 97:2571–2577

    Google Scholar 

  80. Weigand F, Haeser M (1997) Theor Chem Acc 97:331

    Google Scholar 

  81. Schafer A, Huber C, Achlrichs R (1994) J Chem Phys 100:5829–5835

    Google Scholar 

  82. Laaksonen L (1992) J Mol Graph 10:33–34

    PubMed  Google Scholar 

  83. Boge EM, Freyberg DP, Kokot E, Mockler GM, Sinn E (1977) Inorg Chem 16:1655–1660

    Google Scholar 

  84. Hammes BS, Carrano CJ (1999) Inorg Chem 38:3562–3568

    PubMed  Google Scholar 

  85. Martin LY, Sperati CR, Busch DH (1977) J Am Chem Soc 99:2968–2981

    Google Scholar 

  86. Cameron JH, McCullough KJ (1990) J Chem Soc Dalton Trans 935–941

  87. Lever ABP (1984) Inorganic Electronic Spectroscopy. Elsevier, New York, pp 507–530

  88. Johnson MK (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito, pp 253–259

  89. Desrochers PJ, Telser J, Zvyagin SA, Ozarowski A, Krzystek J, Vicic DA (2006) Inorg Chem 45:8930–8941

    PubMed  Google Scholar 

  90. Steenkamp PJ (1987) Inorg Chim Acta 132:27–31

    Google Scholar 

  91. Kolis JW, Hamilton DE, Kildahl NK (1979) Inorg Chem 18:1826–1831

    Google Scholar 

  92. Sacconi L, Ciampolini M, Speroni GP (1965) J Am Chem Soc 87:3102–3106

    Google Scholar 

  93. Sacconi L, Nannelli P, Nardi N, Campigli U (1965) Inorg Chem 4:943–949

    Google Scholar 

  94. Sacconi L, Orioli PL, Di Vaira M (1996) Inorg Chem 4:943–949

    Google Scholar 

  95. Arakawa S, Nozawa T, Hatano M (1974) Bull Chem Soc Jpn 47:2643–2646

    Google Scholar 

  96. Harding MJ, Mason SF, Robbins DJ, Thomson AJ (1971) J Chem Soc A 19:3058–3062

    Google Scholar 

  97. Harding MJ, Mason SF, Robbins DJ, Thomson AJ (1971) J Chem Soc A 19:3047–3058

    Google Scholar 

  98. Hormann E, Riesen PC, Neuburger M, Zehnder M, Kaden TA (1996) Helv Chim Acta 79:235–243

    Google Scholar 

  99. Katô H, Yorita K, Kato Y (1979) Bull Chem Soc Jpn 52:2465–2473

    Google Scholar 

  100. Kobayashi H, Bohdan K-D (1972) Bull Chem Soc Jpn 45:2485–2490

    Google Scholar 

  101. Kobayashi N, Xizhang Z, Tetsuo O (1987) J Chem Soc Dalton Trans 1801–1803

  102. Scheiner AF, Hamm DJ (1973) Inorg Chem 12:2037–2048

    Google Scholar 

  103. Kiick KL (1991) Chemistry. University of Georgia, Athens, p 180

  104. Averill DF, Legg JI, Smith DL (1971) Inorg Chem 11:2344–2349

    Google Scholar 

  105. Fukuda Y, Yamagata K, Kaden TA (1987) Bull Chem Soc Jpn 60:3569–3574

    Google Scholar 

  106. Ohtsu H, Tanaka K (2003) Inorg Chem 43:3024–3030

    Google Scholar 

  107. Ohtsu H, Tanaka K (2005) Chem Eur J 11:3420–3426

    Google Scholar 

  108. Neupane KP, Gearty K, Francis A, Shearer J (2007) J Am Chem Soc 129:14605–14618

    PubMed  Google Scholar 

  109. Battaglia LP, Berzolla PG, Corradi AB, Pelizzi C, Pelosi G, Solinas C (1992) J Chem Soc Dalton Trans 3089–3095

  110. Dobrzynska D, Jerzykiewicz LB, Duczmal M, Wojciechowska A, Jablonska K, Palus J, Ozarowski A (2006) Inorg Chem 45:10479–10486

    PubMed  Google Scholar 

  111. Du Q-Y, Li Y-P, Xin L-Y, Han M-L (2005) Z Kristallogr NCS 220:539–540

    Google Scholar 

  112. Ihara Y, Satake Y, Fujimoto Y, Senda H, Suzuki M, Uehara A (1991) Bull Chem Soc Jpn 64:2349–2352

    Google Scholar 

  113. Ide DMM, Norman RE (2007) Acta Crystallogr E 63:m558–m560

    Google Scholar 

  114. Atkinson IM, Byriel KA, Chia PSK, Kennard CHL, Leong AJ, Lindoy LF, Lowe MP, Mahendran S, Smith G, Wei G (1998) Aust J Chem 51:985–991

    Google Scholar 

  115. Thulstrup PN, Broge L, Larsen E, Springborg J (2003) J Chem Soc Dalton Trans 3199–3204

  116. Xiao Z, Lavery MJ, Ayhan M, Scrofani SDB, Wilce MCJ, Guss JM, Tregloan PA, George GN, Wedd AG (1998) J Am Chem Soc 120:4135–4150

    Google Scholar 

  117. Pons J, Chadghan A, Casabo J, Alvarez-Larena A, Piniella JF, Solans X, Font-Bardia M, Ros J (2001) Polyhedron 20:1029–1035

    Google Scholar 

  118. Elerman Y, Kabak M (1993) Acta Crystallogr C 49:1905–1906

    Google Scholar 

  119. Nielson DO, Larsen ML, Willet RD, Legg JI (1971) J Am Chem Soc 93:5079–5082

    Google Scholar 

  120. Shintani N, Sone K, Fukuda Y, Ohashi Y (1991) Bull Chem Soc Jpn 64:252–258

    Google Scholar 

  121. Calatayud ML, Castro I, Sletten J, Cano J, Lloret F, Faus J, Julve M, Seitz G, Mann K (1996) Inorg Chem 35:2858–2865

    Google Scholar 

  122. Stranger R, McMahon KL, Gahan LR, Bruce JI, Hambley TW (1997) Inorg Chem 36:3466–3475

    PubMed  Google Scholar 

  123. Cha M, Gatlin CL, Critchlow SC, Kovacs JA (2002) Inorg Chem 32:5868–5877

    Google Scholar 

  124. Chohan BS, Shoner SC, Kovacs JA, Maroney MJ (2004) Inorg Chem 43:7726–7734

    PubMed  Google Scholar 

  125. Gomes L, Pereira E, de Castro B (2000) J Chem Soc Dalton Trans 1373–1379

  126. Dutton JC, Fallon GD, Murray KS (1990) Chem Lett 983–986

  127. Lipscomb WN, Strater N (1996) Chem Rev 96:2375–2434

    PubMed  Google Scholar 

  128. Ruth-Gomis F-X, Grams F, Yiallouros I, Nar H, Kusthardt U, Zwilling R, Bode W, Stocker W (1994) J Biol Chem 269:17111–17117

    Google Scholar 

  129. Lee MH, Pankratz HS, Wang S, Scott RA, Finnegan MG, Johnson MK, Ippolito JA, Christianson DW, Hausinger RP (1993) Protein Sci 2:1042–1052

    PubMed  Google Scholar 

  130. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ (2003) Nat Struct Biol 10:126–130

    PubMed  Google Scholar 

  131. Davidson G, Clugston SL, Honek JF, Maroney MJ (2000) Inorg Chem 39:2962–2963

    PubMed  Google Scholar 

  132. Haumann M, Porthun A, Buhrke T, Liebisch P, Meyer-Klaucke W, Friedrich B, Dau H (2003) Biochemistry 42:11004–11015

    PubMed  Google Scholar 

  133. Mullins CS, Grapperhaus CA, Kozlowski PM (2006) J Biol Chem 11:617–625

    Google Scholar 

  134. Fox S, Wang Y, Silver A, Millar M (1990) J Am Chem Soc 112:3218–3220

    Google Scholar 

  135. Dey A, Jeffery SP, Darensbourg M, Hodgson KO, Hedman B, Solomon EI (2007) Inorg Chem 46:4989–4996

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grant GM 64631 to T.C.B.), the University of Wisconsin Chemical Biology Interface Training Grant from the National Institutes of Health (Grant T32 GM008505 to O.E.J.), and the National Science Foundation (Grant CHE-0809188 to M.J.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Brunold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, O.E., Ryan, K.C., Maroney, M.J. et al. Spectroscopic and computational investigation of three Cys-to-Ser mutants of nickel superoxide dismutase: insight into the roles played by the Cys2 and Cys6 active-site residues. J Biol Inorg Chem 15, 777–793 (2010). https://doi.org/10.1007/s00775-010-0641-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0641-2

Keywords

Navigation