Skip to main content
Log in

Iron–sulfur cluster biosynthesis: characterization of IscU–IscS complex formation and a structural model for sulfide delivery to the [2Fe–2S] assembly site

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Recent work on the bacterial iron–sulfur cluster (isc) family of gene products, and eukaryotic homologs, has advanced the molecular understanding of cellular mechanisms of iron–sulfur cluster biosynthesis. Members of the IscS family are pyridoxyl-5′-phosophate dependent proteins that deliver inorganic sulfide during assembly of the [2Fe–2S] cluster on the IscU scaffold protein. Herein it is demonstrated through calorimetry, fluorescence, and protein stability measurements that Thermotoga maritima IscS forms a 1:1 complex with IscU in a concentration-dependent manner (K D varying from 6 to 34 μM, over an IscS concentration range of approximately 2–50 μM). Docking simulations of representative IscU and IscS proteins reveal critical contact surfaces at the N-terminal helix of IscU and a C-terminal loop comprising a chaperone binding domain. Consistent with the isothermal titration calorimetry results described here, an overall dominant contribution of charged surfaces with a change in the molar heat capacity of binding, ΔC p ~ 199.8 kcal K−1 mol−1, is observed that accounts for approximately 10% of the total accessible surface area at the binding interface. Both apo and holo IscUs and homologs were found to bind to IscS in an enthalpically driven reaction with comparable K D values. Both helix and loop regions are highly conserved among phylogenetically diverse organisms from a pool of archael, bacterial, fungal, and mammalian representatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1,5-IAEDANS:

5-((((2-Iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid

5-BMF:

5-(Bromomethyl)fluorescein

DTT:

Dithiothreitol

FRET:

Fluorescence resonance energy transfer

IPTG:

Isopropyl β-d-thiogalactopyranoside

ITC:

Isothermal titration calorimetry

PDB:

Protein Data Bank

PLP:

Pyridoxyl 5′-phosphate

PMSF:

Phenylmethylsulfonyl fluoride

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

References

  1. Beinert H, Holm RH, Munck E (1997) Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  2. Beinert H (2000) J Biol Inorg Chem 5:2–15

    Article  PubMed  CAS  Google Scholar 

  3. Gutteridge JM, Rowley DA, Halliwell B (1982) Biochem J 206:605–609

    PubMed  CAS  Google Scholar 

  4. Henle ES, Linn S (1997) J Biol Chem 272:19095–19098

    Article  PubMed  CAS  Google Scholar 

  5. Lauffer RB (1992) Iron and human disease. CRC Press, London

    Google Scholar 

  6. Gerber J, Lill R (2002) Mitochondrion 2:71–86

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi Y, Tokumoto U (2002) J Biol Chem 277:28380–28383

    Article  PubMed  CAS  Google Scholar 

  8. Garland S, Hoff K, Vickery LE, Culotta VC (1999) J Mol Biol 294:897–907

    Article  PubMed  CAS  Google Scholar 

  9. Yoon T, Cowan JA (2003) J Am Chem Soc 125:6078–6084

    Article  PubMed  CAS  Google Scholar 

  10. Bencze KZ, Yoon T, Millán-Pacheco C, Bradley PB, Pastor N, Cowan JA, Stemmler TL (2007) Chem Commun 1798–1800

  11. Yoon T, Cowan JA (2004) J Biol Chem 279:25943–25946

    Article  PubMed  CAS  Google Scholar 

  12. Gerber J, Muehlenhoff U, Lill R (2003) EMBO Rep 4:906–911

    Article  PubMed  CAS  Google Scholar 

  13. Ramazzotti A, Vanmansart V, Foury F (2004) FEBS Lett 557:215–220

    Article  PubMed  CAS  Google Scholar 

  14. Christen P, Mehta PK (2001) Chem Rev 1:436–447

    CAS  Google Scholar 

  15. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Proc Natl Acad Sci USA 90:2754–2758

    Article  PubMed  CAS  Google Scholar 

  16. Zheng L, White RH, Cash VL, Dean DR (1994) Biochemistry 33:4714–4720

    Article  PubMed  CAS  Google Scholar 

  17. Jaschkowitz K, Seidler A (2000) Biochemistry 39:3416–3423

    Article  PubMed  CAS  Google Scholar 

  18. Schneider D, Jaschkowitz K, Seidler A, Rogner M (2000) Indian J Biochem Biophys 37:441–446

    PubMed  CAS  Google Scholar 

  19. Gubernator B, Seidler A, Rogner M, Szczepaniak A (2003) Protein Expr Purif 29:8–14

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser JT, Clausen T, Bourenkow GP, Bartunik H-D, Steinbacher S, Huber R (2000) J Mol Biol 297:451–464

    Article  PubMed  CAS  Google Scholar 

  21. Cupp-Vickery JR, Urbina H, Vickery LE (2003) J Mol Biol 330:1049–1059

    Article  PubMed  CAS  Google Scholar 

  22. Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K, Kispal G, Lill R (2004) J Biol Chem 279:36906–36915

    Article  PubMed  Google Scholar 

  23. Li K, Tong W-H, Hughes RM, Rouault TA (2006) J Biol Chem 281:12344–12351

    Article  PubMed  CAS  Google Scholar 

  24. Bertini I, Cowan JA, Cristina DB, Luchinat C, Mansy SS (2003) J Mol Biol 331:907–924

    Article  PubMed  CAS  Google Scholar 

  25. Mansy SS, Wu G, Surerus KK, Cowan JA (2002) J Biol Chem 277:21397–21404

    Article  PubMed  CAS  Google Scholar 

  26. Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA (2000) J Am Chem Soc 122:6805–6806

    Article  CAS  Google Scholar 

  27. Wu S-P, Wu G, Surerus K, Cowan JA (2002) Biochemistry 41:8876–8885

    Article  PubMed  CAS  Google Scholar 

  28. Siegel LM (1965) Anal Biochem 11:126–132

    Article  PubMed  CAS  Google Scholar 

  29. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Anal Biochem 179:131–137

    Article  PubMed  CAS  Google Scholar 

  30. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, Dordrecht/New York

    Google Scholar 

  31. Jones S, Thorton JM (1996) Proc Natl Acad Sci USA 93:13–20

    Article  PubMed  CAS  Google Scholar 

  32. Chen R, Li L, Weng Z (2003) Protein 52:68–73

    Article  CAS  Google Scholar 

  33. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) Bioinformatics 20:45–50

    Article  PubMed  CAS  Google Scholar 

  34. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  35. Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) J Biol Chem 276:44521–44526

    Article  PubMed  CAS  Google Scholar 

  36. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) Proc Natl Acad Sci USA 97:599–604

    Article  PubMed  CAS  Google Scholar 

  37. Liu Y, Cowan JA (2007) Chem Commun 3192–3194

  38. Mansy SS, Cowan JA (2004) Acc Chem Res 27:719–725

    Article  Google Scholar 

  39. Muehlenhoff U, Gerber J, Richhardt N, Lill R (2003) EMBO J 22:4815–4825

    Article  CAS  Google Scholar 

  40. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) Biochemistry 39:7856–7862

    Article  PubMed  CAS  Google Scholar 

  41. Nuth M, Yoon T, Cowan JA (2002) J Am Chem Soc 124:8774–8775

    Article  PubMed  CAS  Google Scholar 

  42. Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) J Am Chem Soc 123:11103–11104

    Article  PubMed  CAS  Google Scholar 

  43. Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE (2004) J Mol Biol 342:1265–1278

    Article  PubMed  CAS  Google Scholar 

  44. Chervenak MC, Toone EJ (1994) J Am Chem Soc 116:10533–10539

    Article  CAS  Google Scholar 

  45. Hoff K, Ta DT, Tapley TL, Silberg JJ, Vickery LE (2002) J Biol Chem 277:27353–27359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant the National Science Foundation, CHE-0111161 (J.A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuth, M., Cowan, J.A. Iron–sulfur cluster biosynthesis: characterization of IscU–IscS complex formation and a structural model for sulfide delivery to the [2Fe–2S] assembly site. J Biol Inorg Chem 14, 829–839 (2009). https://doi.org/10.1007/s00775-009-0495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0495-7

Keywords

Navigation