Skip to main content
Log in

Theoretical study of cyclohexane hydroxylation by three possible isomers of [FeIV(O)(R-TPEN)]2+: does the pentadentate ligand wrapping around the metal center differently lead to the different stability and reactivity?

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations have been carried out to elucidate the mechanism of cyclohexane hydroxylation by three possible isomers of [FeIV(O)(N-R-N,N′,N′-tris(2-pyridylmethyl)ethane-1,2-diamine)]2+ (R is methyl or benzyl) (Klinker et al. in Angew Chem Int Ed 44:3690–3694, 2005). The calculations offer a mechanistic view and reveal the following features: (a) all the three isomers possess triplet ground states and low-lying quintet excited states, (b) the relative stability follows the order isomer A > isomer B > isomer C, in agreement with the conclusions of Klinker et al., (c) the theoretical investigations provide a rationale to explain the interconversion of the three isomers, (d) the reaction pathways of the C–H hydroxylation are initiated by a hydrogen-abstraction step, and (e) the three isomers react with cyclohexane via two-state-reactivity patterns on competing triplet and quintet spin-state surfaces. As such, in the gas phase, the relative reactivity exhibits the trend isomer B > isomer A, while at the highest level, B2//B1 with zero point energy and solvation corrections, the relative reactivity follows the order isomer B > isomer A > isomer C. Thus, the calculated reaction pathway shows that pyridine rings perpendicular to the Fe–O axis result in more reactive species, and a pyridine ring coordinated trans to the oxygen atom leads to the least reactive isomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Isomer A contains two pyridine rings that eclipse the Fe–O axis and a third that is perpendicular to it. In isomer B one ring eclipses the Fe–O axis and two are perpendicular to it, whereas in isomer C two rings are perpendicular to the Fe–O axis and the other is coordinated trans to the oxygen atom [18].

  2. [FeIV(O)(N4Py)]2+ persists for several days (t 1/2 ~ 60 h at 25 °C) and [FeIV(O)(Bn-TPEN)]2+ persists for several hours (t 1/2 ~ 6 h at 25 °C). The experimental data show that the free-energy barrier for [FeIV(O)(Bn-TPEN)]2+ with CH is 1 kcal/mol lower than the corresponding substrate with [FeIV(O)(N4Py)]2+ [13]. All in all, our calculations give the same conclusion as that of Kaizer et al. [13].

References

  1. Que L Jr, Ho RYN (1996) Chem Rev 96:2607–2624

    Article  PubMed  CAS  Google Scholar 

  2. Solomon EI, Brunold TC, Davis M, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350

    Article  PubMed  CAS  Google Scholar 

  3. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  PubMed  CAS  Google Scholar 

  4. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  PubMed  CAS  Google Scholar 

  5. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  PubMed  CAS  Google Scholar 

  6. Proshlyakov DA, Henshaw TF, Monterosso GR, Ryle MJ, Hausinger RP (2004) J Am Chem Soc 126:1022–1023

    Article  PubMed  CAS  Google Scholar 

  7. Hoffart LM, Barr EW, Guyer RB, Bollinger JM Jr, Krebs C (2006) Proc Natl Acad Sci USA 103:14738–14743

    Article  PubMed  CAS  Google Scholar 

  8. Galonic DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Biol 3:113–116

    Article  PubMed  CAS  Google Scholar 

  9. Shan XP, Que L Jr (2006) J Inorg Biochem 100:421–433

    Article  PubMed  CAS  Google Scholar 

  10. Neese F (2006) J Inorg Biochem 100:716–726

    Article  PubMed  CAS  Google Scholar 

  11. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  PubMed  CAS  Google Scholar 

  12. Lim MH, Rohde J-U, Stubna A, Bukoeski MR, Costas M, Ho RYN, Münck E, Nam W, Que L Jr (2003) Proc Natl Acad Sci USA 100:3665–3670

    Article  PubMed  CAS  Google Scholar 

  13. Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  PubMed  CAS  Google Scholar 

  14. Kim SO, Sastri CV, Seo MS, Kim J, Nam W (2005) J Am Chem Soc 127:4178–4179

    Article  PubMed  CAS  Google Scholar 

  15. Oh NY, Suh Y, Park MJ, Seo MS, Kim J, Nam W (2005) Angew Chem Int Ed 44:4235–4239

    Article  CAS  Google Scholar 

  16. Sastri CV, Park MJ, Ohta T, Jackson TA, Stubna A, Seo MS, Lee J, Kim J, Kitagawa T, Münck E, Que L Jr, Nam W (2005) J Am Chem Soc 127:12494–12495

    Article  PubMed  CAS  Google Scholar 

  17. Bukowski MR, Koehntop KD, Stubna A, Bominaar EL, Halfen JA, Münck E, Nam W, Que L Jr (2005) Science 310:1000–1002

    Article  PubMed  CAS  Google Scholar 

  18. Klinker EJ, Kaizer J, Brennessel WW, Woodrum NL, Cramer CJ, Que L Jr (2005) Angew Chem Int Ed 44:3690–3694

    Article  CAS  Google Scholar 

  19. Sastri CV, Oh K, Lee YJ, Seo MS, Shin W, Nam W (2006) Angew Chem Int Ed 45:3992–3995

    Article  CAS  Google Scholar 

  20. Krebs C, Fujimori DG, Walsh C, Bollinger JM Jr (2007) Acc Chem Res 40:484–492

    Article  PubMed  CAS  Google Scholar 

  21. Que L Jr (2007) Acc Chem Res 40:493–500

    Article  PubMed  CAS  Google Scholar 

  22. Decker A, Clay MD, Solomon EI (2006) J Inorg Biochem 100:697–706

    Article  PubMed  CAS  Google Scholar 

  23. Neidig ML, Decker A, Choroba OW, Huang FL, Kavana M, Moran GR, Spencer JB, Solomon EI (2006) Proc Natl Acad Sci USA 103:12966–12973

    Article  PubMed  CAS  Google Scholar 

  24. Decker A, Rohde J-U, Que L Jr, Solomon EI (2004) J Am Chem Soc 126:5378–5379

    Article  PubMed  CAS  Google Scholar 

  25. Pau MYM, Davis MI, Orville AM, Lipscomb JD, Solomon EI (2007) J Am Chem Soc 129:1944–1958

    Article  PubMed  CAS  Google Scholar 

  26. Schenk G, Pau MYM, Solomon EI (2004) J Am Chem Soc 126:505–515

    Article  PubMed  CAS  Google Scholar 

  27. Decker A, Solomon EI (2005) Angew Chem Int Ed 44:2252–2255

    Article  CAS  Google Scholar 

  28. Decker A, Rohde J-U, Klinker EJ, Wong SD, Que L Jr, Solomon EI (2007) J Am Chem Soc 129:15983–15996

    Article  PubMed  CAS  Google Scholar 

  29. Decker A, Solomon EI (2005) Curr Opin Chem Biol 9:152–163

    Article  PubMed  CAS  Google Scholar 

  30. Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542

    Article  PubMed  CAS  Google Scholar 

  31. Johansson AJ, Blomberg MRA, Siegbahn PEM (2007) J Phys Chem C 111:12397–12406

    Article  CAS  Google Scholar 

  32. Hirao H, Que L Jr, Nam W, Shaik S (2008) Chem Eur J 14:1740–1756

    Article  CAS  Google Scholar 

  33. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  PubMed  CAS  Google Scholar 

  34. Kumar D, Hirao H, Que L Jr, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  PubMed  CAS  Google Scholar 

  35. Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S (2008) J Am Chem Soc 130:3319–3327

    Article  PubMed  CAS  Google Scholar 

  36. de Visser SP, Oh K, Han A-R, Nam W (2007) Inorg Chem 46:4632–4641

    Article  PubMed  CAS  Google Scholar 

  37. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  CAS  Google Scholar 

  38. de Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  PubMed  CAS  Google Scholar 

  39. Balland V, Charlot A-F, Banse F, Girerd J-J, Mattioli TA, Bill E, Bartoli J-F, Battioni P, Mansuy D (2004) Eur J Inorg Chem 2:301–308

    Article  CAS  Google Scholar 

  40. Martinho M, Banse F, Bartoli M-F, Mattioli TA, Battioni P, Horner O, Bourcier S, Girerd J-J (2005) Inorg Chem 44:9592–9596

    Article  PubMed  CAS  Google Scholar 

  41. Paine TK, Costas M, Kaizer J, Que L Jr (2006) J Biol Inorg Chem 11:272–276

    Article  PubMed  CAS  Google Scholar 

  42. Sastri CV, Seo MS, Park MJ, Kim KM, Nam W (2005) Chem Commun 1405–1407

  43. You M, Seo MS, Kim KM, Nam W, Kim J (2006) Bull Korean Chem Soc 27:1140–1144

    Article  CAS  Google Scholar 

  44. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L Jr, Shaik S, Nam W (2007) Proc Natl Acad Sci USA 104:19181–19186

    Article  PubMed  CAS  Google Scholar 

  45. Rohde J-U, Que L Jr (2005) Angew Chem Int Ed 44:2255–2258

    Article  CAS  Google Scholar 

  46. Nam W (2007) Acc Chem Res 40:522–531

    Article  PubMed  CAS  Google Scholar 

  47. Rohde J-U, Torelli S, Shan XP, Lim MH, Klinker EJ, Kaizer J, Chen K, Nam W, Que L Jr (2004) J Am Chem Soc 126:16750–16761

    Article  PubMed  CAS  Google Scholar 

  48. Park MJ, Lee J, Suh Y, Kim J, Nam W (2006) J Am Chem Soc 128:2630–2634

    Article  PubMed  CAS  Google Scholar 

  49. Nesheim JC, Lipscomb JD (1996) Biochemistry 35:10240–10247

    Article  PubMed  CAS  Google Scholar 

  50. Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  51. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  54. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  55. Hay JP, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  56. Friesner RA, Murphy RB, Beachy MD, Ringlanda MN, Pollard WT, Dunietz BD, Cao YX (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  57. Melander L, Saunders WH Jr (1987) In: Reaction rates of isotopic molecules. Krieger, Malabar, chap 2

  58. Kumar S, de Visser SP, Sharma PK, Cohen S, Shaik S (2004) J Am Chem Soc 126:1907–1920

    Article  PubMed  CAS  Google Scholar 

  59. de Visser SP (2006) J Biol Inorg Chem 11:168–178

    Article  PubMed  CAS  Google Scholar 

  60. Bassan A, Blomberg MRA, Siegbahn PEM (2003) Chem Eur J 9:4055–4067

    Article  CAS  Google Scholar 

  61. Quinonero D, Morokuma K, Musaev DG, Mas-Balleste R, Que L Jr (2005) J Am Chem Soc 127:6548–6549

    Article  PubMed  CAS  Google Scholar 

  62. Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    Article  CAS  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  PubMed  CAS  Google Scholar 

  64. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  65. Swart M, Ehlers AW, Lammertsma K (2004) Mol Phys 102:2467–2474

    Article  CAS  Google Scholar 

  66. Groenhof AR, Swart M, Ehlers AW, Lammertsma K (2005) J Phys Chem A 109:3411–3417

    Article  PubMed  CAS  Google Scholar 

  67. Baker J, Pulay P (2002) J Chem Phys 117:1441–1449

    Article  CAS  Google Scholar 

  68. Shaik S, Danovich D, Fiedler A, SchrÖder D, Schwarz H (1995) Helv Chem Acta 78:1393–1407

    Article  CAS  Google Scholar 

  69. SchrÖder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  PubMed  CAS  Google Scholar 

  70. Hirao H, Kumar D, Thiel W, Shaik S (2005) J Am Chem Soc 127:13007–13018

    Article  PubMed  CAS  Google Scholar 

  71. Mola J, Romero I, Rodríguez M, Bozoglian F, Poater A, Solà M, Parella T, Benet-Buchholz J, Fontrodona X, Llobet A (2007) Inorg Chem 46:10707–10716

    Article  PubMed  CAS  Google Scholar 

  72. Carter EA, Goddard WAIII (1988) J Phys Chem 92:5679–5683

    Article  CAS  Google Scholar 

  73. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NKBRSF(2007CB815202) and NSFC(20833008). Our deep appreciation goes to Sason Shaik and Hirao Hajime of the Jerusalem group for their generous help and to Edward I. Solomon and D. Wong Shaun of Stanford University for their useful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keli Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Y. & Han, K. Theoretical study of cyclohexane hydroxylation by three possible isomers of [FeIV(O)(R-TPEN)]2+: does the pentadentate ligand wrapping around the metal center differently lead to the different stability and reactivity?. J Biol Inorg Chem 14, 533–545 (2009). https://doi.org/10.1007/s00775-009-0468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0468-x

Keywords

Navigation