Skip to main content
Log in

Effects of selenium on the structure and function of recombinant human S-adenosyl-l-methionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effects of SeIV on the structure and function of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT) purified from the cytoplasm of Escherichia coli were studied. The coding region of human AS3MT complementary DNA was amplified from total RNA extracted from HepG2 cell by reverse transcription PCR. Soluble and active human AS3MT was expressed in the E. coli with a Trx fusion tag under a lower induction temperature of 25 °C. Spectra (UV–vis, circular dichroism, and fluorescence) were first used to probe the interaction of SeIV and recombinant human AS3MT and the structure–function relationship of the enzyme. The recombinant human AS3MT had a secondary structure of 29.0% α-helix, 23.9% β-pleated sheet, 17.9% β-turn, and 29.2% random coil. When SeIV was added, the content of the α-helix did not change, but that of the β-pleated sheet increased remarkably in the conformation of recombinant human AS3MT. SeIV inhibited the enzymatic methylation of inorganic AsIII in a concentration-dependent manner. The IC50 value for SeIV was 2.38 μM. Double-reciprocal (1/V vs. 1/[inorganic AsIII]) plots showed SeIV to be a noncompetitive inhibitor of the methylation of inorganic AsIII by recombinant human AS3MT with a K i value of 2.61 μM. We hypothesized that SeIV interacts with the sulfhydryl group of cysteine(s) in the structural residues rather than the cysteines of the active site (Cys156 and Cys206). When SeIV was combined with cysteine(s) in the structural residues, the conformation of recombinant human AS3MT changed and the enzymatic activity decreased. Considering the quenching of tryptophan fluorescence, Cys72 and/or Cys226 are deduced to be primary targets for SeIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

Abbreviations

AS3MT:

Arsenic (+3 oxidation state) methyltransferase

CD:

Circular dichroism

cDNA:

Complementary DNA

DMAV :

Dimethylarsinic acid

DTT:

1,4-Dithiothreitol

GSH:

Glutathione

iAsIII :

Inorganic arsenite

iAsV :

Inorganic arsenate

IPTG:

Isopropyl β-d-thiogalactopyranoside

MALDI:

Matrix-assisted laser desorption/ionization

2-ME:

2-Mercaptoethanol

MMAV :

Monomethylarsonic acid

MS:

Mass spectrometry

Ni-NTA:

Nickel nitrilotriacetic acid

SAM:

S-Adenosyl-l-methionine

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SeIV :

Selenite

TOF:

Time of flight

Tris–HCl:

Tris(hydroxymethyl)aminomethane hydrochloride

References

  1. Chowdhury TR, Basu GK, Mandal BK, Raymahashay BC, Guha S, Bhowmik A (1999) Nature 401:545–547

    PubMed  CAS  Google Scholar 

  2. Stokstad E (2002) Science 298:1535–1537

    Article  PubMed  CAS  Google Scholar 

  3. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Nature 430:68–71

    Article  PubMed  CAS  Google Scholar 

  4. Sun GF (2004) Toxicol Appl Pharmacol 198:268–271

    Article  PubMed  CAS  Google Scholar 

  5. Tchounwou PB, Centeno JA, Patlolla AK (2004) Mol Cell Biochem 255:47–55

    Article  PubMed  CAS  Google Scholar 

  6. Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Br J Cancer 66:888–892

    PubMed  CAS  Google Scholar 

  7. Bates MN, Smith AH, Hopenhaynrich C (1992) Am J Epidemiol 135:462–476

    PubMed  CAS  Google Scholar 

  8. Smith AH, Hopenhaynrich C, Bates MN, Goeden HM, Hertzpicciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Environ Health Perspect 97:259–267

    Article  PubMed  CAS  Google Scholar 

  9. Buchet JP, Lauwerys R, Roels H (1981) Int Arch Occup Environ Health 48:71–79

    Article  PubMed  CAS  Google Scholar 

  10. Smith TJ, Crecelius EA, Reading JC (1977) Environ Health Perspect 19:89–93

    Article  PubMed  CAS  Google Scholar 

  11. Crecelius EA (1977) Environ Health Perspect 19:147–150

    Article  PubMed  CAS  Google Scholar 

  12. Cullen WR, McBride BC, Reglinski J (1984) J Inorg Biochem 21:45–60

    Article  CAS  Google Scholar 

  13. Cullen WR, McBride BC, Reglinski J (1984) J Inorg Biochem 21:179–194

    Article  CAS  Google Scholar 

  14. Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davist KM, Hall LL, Simeonsson JB, Thomas DJ (2002) J Biol Chem 277:10795–10893

    Article  PubMed  CAS  Google Scholar 

  15. Thomas DJ, Waters SB, Styblo M (2004) Toxicol Appl Pharmacol 198:319–326

    Article  PubMed  CAS  Google Scholar 

  16. Drobna Z, Waters SB, Deves V, Harmon AW, Thomas DJ, Styblo M (2005) Toxicol Appl Pharmacol 207:147–159

    Article  PubMed  CAS  Google Scholar 

  17. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) Arch Toxicol 79:183–191

    Article  PubMed  CAS  Google Scholar 

  18. Styblo M, Thomas DJ (2001) Toxicol Appl Pharmacol 172:52–61

    Article  PubMed  CAS  Google Scholar 

  19. Hasegawa T, Okuno T, Nakamuro K, Sayato Y (1996) Arch Toxicol 71:39–44

    Article  PubMed  CAS  Google Scholar 

  20. Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) J Biol Chem 282:8759–8767

    Article  PubMed  CAS  Google Scholar 

  21. Ganther HE (1971) Biochemistry 10:4089–4098

    Article  PubMed  CAS  Google Scholar 

  22. Francesconi KA, Pannier F (2004) Clin Chem 50:2240–2253

    Article  PubMed  CAS  Google Scholar 

  23. Mozier NM, McConnell KP, Hoffman JL (1988) J Biol Chem 263:4527–4531

    PubMed  CAS  Google Scholar 

  24. Ranjard L, Prigent-Combaret C, Nazaret S, Cournoyer B (2002) J Bacteriol 184:3146–3149

    Article  PubMed  CAS  Google Scholar 

  25. Levander OA (1977) Environ Health Perspect 19:159–164

    Article  PubMed  CAS  Google Scholar 

  26. Babich H, Martin-Alguacil N, Borenfreund E (1989) Toxicol Lett 45:157–164

    Article  PubMed  CAS  Google Scholar 

  27. Biswas S, Talukder G, Sharma A (1999) Mutat Res 441:155–160

    PubMed  CAS  Google Scholar 

  28. Walton FS, Waters SB, Jolley SL, LeCluyse EL, Thomas DJ, Styblo M (2003) Chem Res Toxicol 16:261–265

    Article  PubMed  CAS  Google Scholar 

  29. Kenyon EM, Hughes MF, Levander OA (1997) J Toxicol Environ Health 51:279–299

    Article  PubMed  CAS  Google Scholar 

  30. Ueda H, Kuroda K, Endo G (1997) Anticancer Res 17:1939–1944

    PubMed  CAS  Google Scholar 

  31. Gregus Z, Gyurasics A, Koszorus L (1998) Environ Toxicol Pharmacol 5:89–99

    Article  CAS  Google Scholar 

  32. Miyazaki K, Watanabe C, Mori K, Yoshida K, Ohtsuka R (2005) Toxicology 208:357–365

    Article  PubMed  CAS  Google Scholar 

  33. Hsueh YM, Ko YF, Huang YK, Chen HW, Chiou HY, Huang YL, Yang MH, Chen CJ (2003) Toxicol Lett 137:49–63

    Article  PubMed  CAS  Google Scholar 

  34. Christian WJ, Hopenhayn C, Centeno JA, Todorov T (2006) Environ Res 100:115–122

    Article  PubMed  CAS  Google Scholar 

  35. Beckman L, Nordenson I (1986) Hum Hered 36:397–401

    Article  PubMed  CAS  Google Scholar 

  36. Styblo M, Delnomdedieu M, Thomas DJ (1996) Chem Biol Interact 99:147–161

    Article  PubMed  CAS  Google Scholar 

  37. Manley SA, George GN, Pickering IJ, Glass RS, Prenner EJ, Yamdagni R, Wu Q, Gailer J (2006) Chem Res Toxicol 19:601–607

    Article  PubMed  CAS  Google Scholar 

  38. Gailer J, George GN, Pickering IJ, Prince RC, Younis HS, Winzerling JJ (2002) Chem Res Toxicol 15:1466–1471

    Article  PubMed  CAS  Google Scholar 

  39. Gailer J, George GN, Pickering IJ, Prince RC, Ringwald SC, Pemberton JE, Glass RS, Younis HS, DeYoung DW, Aposhian HV (2000) J Am Chem Soc 122:4637–4639

    Article  CAS  Google Scholar 

  40. Zakharyan RA, Tsaprailis G, Chowdhury UK, Hernandez A, Aposhian HV (2005) Chem Res Toxicol 18:1287–1295

    Article  PubMed  CAS  Google Scholar 

  41. Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) Science 315:387–389

    Article  PubMed  CAS  Google Scholar 

  42. Kuroki T, Matsushima T (1987) Mutagenesis 2:33–37

    Article  PubMed  CAS  Google Scholar 

  43. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  44. Yang JT, Chuen-Shang CW, Martinez HM (1986) Method Enzymol 130:208–257

    Article  CAS  Google Scholar 

  45. Styblo M, Thomas DJ (1997) Toxicol Appl Pharmacol 147:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Naranmandura H, Suzuki N, Suzuki KT (2006) Chem Res Toxicol 19:1010–1018

    Article  PubMed  CAS  Google Scholar 

  47. Blackwell JR, Horgan R (1991) FEBS Lett 295:10–12

    Article  PubMed  CAS  Google Scholar 

  48. Moore JT, Uppal A, Maley F, Maley GF (1993) Protein Expres Purif 4:160–163

    Article  CAS  Google Scholar 

  49. Strandberg L, Enfors SO (1991) Appl Environ Microbiol 57:1669–1674

    PubMed  CAS  Google Scholar 

  50. Song JK, Kim MK, Rhee JS (1999) J Biotechnol 72:103–114

    Article  PubMed  CAS  Google Scholar 

  51. Schein CH, Noteborn MHM (1988) Nat Biotechnol 6:291–294

    Article  CAS  Google Scholar 

  52. Schein CH (1989) Nat Biotechnol 7:1141–1149

    CAS  Google Scholar 

  53. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) Nat Biotechnol 11:187–193

    Article  CAS  Google Scholar 

  54. Stewart EJ, Åslund F, Beckwith J (1998) EMBO J 17:5543–5550

    Article  PubMed  CAS  Google Scholar 

  55. Wood TC, Salavagionne OE, Mukherjee B, Wang L, Klumpp AF, Thomae BA, Eckloff BW, Schaid DJ, Wieben ED, Weinshilboum RM (2006) J Biol Chem 281:7364–7373

    Article  PubMed  CAS  Google Scholar 

  56. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Arch Toxicol 74:289–299

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi Y, Hayakawa T, Hirano S (2007) Environ Toxicol Pharmacol 23:115–120

    Article  CAS  Google Scholar 

  58. Buchet JP, Lauwerys R (1988) Biochem Pharmacol 37:3149–3153

    Article  PubMed  CAS  Google Scholar 

  59. Bode KA, Applequist J (1998) J Am Chem Soc 120:10938–10946

    Article  CAS  Google Scholar 

  60. Hennessey JP Jr, Johnson WC Jr (1981) Biochemistry 20:1085–1094

    Article  PubMed  CAS  Google Scholar 

  61. Manavalan P, Johnson WC Jr (1985) Proc Int Symp Biomol Struct Interact Suppl J Biosci 8:141–149

    CAS  Google Scholar 

  62. Chen Y, Barkley MD (1998) Biochemistry 37:9976–9982

    Article  PubMed  CAS  Google Scholar 

  63. Vivian JT, Callis PR (2001) Biophys J 80:2093–2109

    Article  PubMed  CAS  Google Scholar 

  64. Gensch T, Hendriks J, Hellingwerf K (2004) Photochem Photobiol Sci 3:531–536

    Article  PubMed  CAS  Google Scholar 

  65. Weljie AM, Vogel HJ (2000) Protein Eng 13:59–66

    Article  PubMed  CAS  Google Scholar 

  66. Ganther HE (1999) Carcinogenesis 20:1657–1666

    Article  PubMed  CAS  Google Scholar 

  67. Levander OA, Morris VC, Higgs DJ (1973) Biochemistry 12:4591–4595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20535020, 20671051, 20721002, and 90813020) and the National Basic Research Program of China (2007CB925102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, Z., Song, X., Xing, Z. et al. Effects of selenium on the structure and function of recombinant human S-adenosyl-l-methionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli . J Biol Inorg Chem 14, 485–496 (2009). https://doi.org/10.1007/s00775-008-0464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0464-6

Keywords

Navigation